Algorithms for Knapsack Problems

Ph.D. thesis, February 1995

David Pisinger

Dept. of Computer Science, University of Copenhagen,
Universitetsparken 1, DK-2100 Copenhagen, Denmark

Contents

1 Introduction 9
1.1 Background L 9
1.2 The Problems 11
1.3 Applications 14

1.3.1 Merging Constraintso 15
1.3.2 Surrogate Relaxation of Set Covering Problems 16
1.3.3 Tightening Constraints in IP Problems 17
1.4 Fundamental Properties of Knapsack Problems. 18
1.5 Classes of Data Instances 20
1.6 Approximate Algorithmso 22
1.6.1 Fully Polynomial Approximation Schemes 23
1.6.2 Other Heuristics L. 24
1.7 Overview of the Thesis 25
An Expanding-core Algorithm for the 0-1 Knapsack Problem 26
Solving hard Knapsack Problems 26
A Minimal Algorithm for the 0-1 Knapsack Problem 27
Avoiding Anomalies in the MT2 Algorithm by Martello and Toth 27
Core Problems in Knapsack Algorithms 28
A Minimal Algorithms for the Multiple-choice Knapsack Problem 28
A Minimal Algorithm for the Bounded Knapsack Problem 29
Dominance Relations in Unbounded Knapsack Problems 29
Subset-sum Problems oo 30
An exact Algorithm for large Multiple Knapsack Problems 31
1.8 Conclusion 31
Appendix A 32

2 An Expanding-core Algorithm for the 0-1 Knapsack Problem 33
2.1 Introduction L 33
2.2 Properties of solutions to KPo 35
2.3 Basic structure of the algorithm o000 36

2.3.1 Roundofferrors Lo 37
2.4 Finding the break itemo Lo 37
2.5 The branch-and-bound algorithm 39
2.6 Expanding the core by need o000 42

CONTENTS

2.6.1 Problem reduction by preprocessing
2.6.2 Sortingo
2.7 Heuristic solution and main algorithm
2.8 Computational experiments L0
2.9 Conclusions

Solving hard Knapsack Problems

3.1 Introduction e e
3.2 Background
3.3 Main algorithm
3.4 Multiplication of sets
3.0 Lower bounds
3.6 Reduction e
3.7 Solution vector
3.8 Computational experiments,
3.9 Parallel implementation,
3.10 Conclusion

A Minimal Algorithm for the 0-1 Knapsack Problem

4.1 Definitions and main algorithm
4.2 A partitioning algorithm for finding the break item
4.3 A dynamic programming algorithm o000 000
4.4 Weak reduction Lo Lo
4.5 Strong upper bound L
4.6 Finding the solution vector 0oL
4.7 Minimality oL
4.8 Computational experienceo
4.9 Conclusions

Appendix A

Avoiding Anomalies in the MT2 Algorithm by Martello and Toth

5.1 Introduction
5.2 Thecoreproblem
5.3 Conclusion L

Core Problems in Knapsack Algorithms

6.1 Introduction
6.2 Definitions
6.3 A model for the hardness of a core problem
6.4 Expected core hardness Lo Lo
6.5 New method for testing algorithm
6.6 Conclusions

Appendix A

Appendix Bo

CONTENTS

7 A Minimal Algorithm for the Multiple-choice Knapsack Problem

7.1 Introduction Lo
7.2 Fundamental properties Lo Lo
7.3 A partitioning algorithm for the LMCKP
7.4 Expanding core L oL
74.1 Classreduction
7.5 A dynamic programming algorithm 000
7.5.1 Reduction of states
7.6 Finding the solution vector
7.7 Main algorithm oL
7.7.1 Minimalityo
7.8 Computational experiments,
7.9 Conclusions
Appendix A

8 A Minimal Algorithm for the Bounded Knapsack Problem

8.1 Imtroduction L
8.2 Minimal algorithms Lo
8.3 Definitions and main algorithmo
8.4 Dynamic programmingo
85 Reduction
8.6 Tightening the bound on an item type
8.7 Solution vector
8.8 Computational experiments
8.9 Conclusions e

Appendix A

Appendix Bo

9 Dominance Relations in Unbounded Knapsack Problems
9.1 Imtroduction
9.2 Reduction algorithms Lo
9.3 Improved reduction
9.4 Computational experiments
9.5 Conclusion
10 Subset-sum Problems

10.1 Introduction
10.2 Balanced operationso
10.3 An iterative algorithm oL oo
10.4 Dynamic programming by reaching 0oL
10.5 Computational experimentso L.
10.6 Knapsack Problemso oo
10.7 Conclusion oL

Appendix A

107
107
109
112
115
116
116
118
118
119
120
122
124
125

127
127
130
131
134
135
136
139
139
142
142
144

147
147
148
149
152
155

11 An exact Algorithm for large Multiple Knapsack Problems

11.1 Introduction
11.2 Upper bounds
11.3 Exact algorithms oo oo
11.4 New algorithm oL
11.5 The Subset-sum Problem
11.6 Tightening constraints
11.7 Reduction algorithm
11.8 Computational experiments
11.9 Conclusion e

12 Summary (in Danish)

CONTENTS

Preface

This Ph.D. thesis has been prepared at the Department of Computer Science at the
University of Copenhagen (DIKU), during the period March 1992 to February 1995. The
work has been supervised by Professor Jakob Krarup.

The presentation consists of an introduction followed by ten separate papers, con-
sidering different aspects of several problems within the family of Knapsack Problems.
Chapters 2, 4, 5, 7, 8 and 11 have been (or will be) published in [75,66,77,81,78,80]
respectively, while Section 1.4 in the Introduction is based on [7]. Several of the papers
have been presented at conferences or as international talks: Chapter 4 in Trondheim [66],
Chapter 6 in Pisa [74], Chapter 7 in Paris [73], Chapter 8 and 10 in Copenhagen [78,79],
and finally Chapter 11 in Reykjavik [80]. Remaining papers are still being refereed, and
thus have an unknown fate.

All the 11 chapters are to some extent self-contained, since they have been written
and published separately. But by reading the chapters in the present order, most profit
will be attained, as the emergence of new ideas and generalizations can be followed.

People working with Knapsack Problems are often fascinated by the graphics of the
Dutch lithographic artist M.C. Escher. Martello and Toth, the perhaps formest re-
searchers in this field, chose the lithography “Relativity” for covering their recent book
on Knapsack Problems. To continue this tradition, I have chosen the woodcut “Smaller
and Smaller” (1956) for the front of this thesis, as it fully describes the nature of dynamic
programming as opposed to branch-and-bound techniques.

Acknowledgements

First of all, I would like to thank my adviser, Professor Jakob Krarup, without whom this
project would not have been possible. Also thanks to professor Stanislaw Walukiewicz
(now director of the Business School in Warsaw), who introduced me to the family of
Knapsack Problems, when I visited Institut Badania Systemowych, Warsaw in 1989.

I am very indebted to Silvano Martello and Paolo Toth for their extensive research in
the field of Knapsack Problems, which has been a great inspiration for my present work.
Without their seiminal work during the last two decades, the field of Knapsack Problems
would never have been at the very high level it is today.

It was a great honor to participate in the EURO Summer Institute X on Combinatorial
Optimization (Paris, July 2-15, 1994) which for two weeks brought together some of
the most promising young researchers in Combinatorial Optimization. Apart from the
profitable lectures at HEC, this Summer Institute gave me a valuable network of friendly

5

6 PREFACE

and inspiring colleagues throughout the world.

I appreciate my colleagues Jesper Traff and Per Laursen, for always finding an excuse
for loading a few knapsacks at the HC@ canteen, and apologize all UNIX users at DIKU,
who surely suffered under my extensive computations, but on the other hand had a good
excuse for going home when the “monster” jobs started at 5.00 p.m. each day. Finally,
at the home frontier, I am most indebted to Renata for her support during this project.

February 28, 1995

David Pisinger

Abstract

This thesis considers a family of combinatorial problems known under the name Knapsack
Problems. As all the problems are N'P-hard we are searching for exact solution techniques
having reasonable solution times for nearly all instances encountered in practice, despite
having exponential time bounds for a number of highly contrived problem instances.
A similar behavior is known from the Simplex algorithm, which despite its exponential
worst-case behavior has reasonable solution times for all realistic problems.

A promising approach for solving Knapsack Problems is to develop algorithms where
the worst-case complexity is bounded by some appropriate measure of the “hardness” of
a problem, e.g. the magnitude of the coefficients, the number of undominated items, or
the number of variables where the integer solution differs from the continuous solution.
Although such bounds in the worst case degenerate to exponential solution times, they
allow us to segregate several groups of easily solvable instances.

The approach has been applied to several problem types within the Knapsack fam-
ily, and thorough computational experiments document the attractive properties of the
algorithms developed. Most of the exact algorithms have linear solution times for easy
instances, while hard instances generally may be solved in pseudo-polynomial time.

ABSTRACT

Chapter 1
Introduction

The aim of this thesis is to develop exact algorithms for Knapsack Problems
having reasonable solution times for nearly all instances encountered in practice,
despite having exponential time bounds for a number of highly contrived problem
instances.

This introduction gives an overview of the family of Knapsack Problems, show
several applications of theoretical as well as of practical origin, and describe the
basic solution techniques that are applied to these problems. Also some important
aspects not covered elsewhere, can be found here, e.g. a discussion of approximate
algorithms. The introduction is closed with an overview of the complete work,
placing it in relation to the rest of the literature.

1.1 Background

Knapsack Problems have been intensively studied since the pioneering work of Dantzig
[13] in the late 50’s, both because of their immediate applications in industry and finan-
cial management, but more pronounced for theoretical reasons, as Knapsack Problems
frequently occur by relaxation of various integer programming problems. In such appli-
cations, we need to solve a Knapsack Problem each time a bounding function is derived,
demanding extremely fast solution techniques.

The family of Knapsack Problems all require a subset of some given items to be chosen
such that the corresponding profit sum is maximized without exceeding the capacity of the
knapsack(s). Different types of Knapsack Problems occur, depending on the distribution
of the items and knapsacks: In the 0-1 Knapsack Problem each item may be chosen at
most once, while in the Bounded Knapsack Problem we have a bounded amount of each
item type. The Multiple-choice Knapsack Problem occurs when the items should be chosen
from disjoint classes and, if several knapsacks are to be filled simultaneously, we get the
Multiple Knapsack Problem. The most general form is the Multi-constrained Knapsack
Problem, which basically is a general Integer Programming (IP) Problem with positive
coefficients.

All Knapsack Problems belong to the family of NP — hard problems, meaning that
it is very unlikely that we ever can devise polynomial algorithms for these problems. But
despite the exponential worst-case solution times of all Knapsack algorithms, several large

10 CHAPTER 1. INTRODUCTION

scaled instances may be solved to optimality in fractions of a second. This surprising result
is the outcome of several decades of research which have exposed the special structural
properties of Knapsack Problems that make the problems so relatively easy to solve. The
intension of this thesis is to expound several of these properties and show their impact on
the solution methods.

As the Knapsack Problems are NP-hard we do not know any other exact solution
techniques than a (possibly complete) enumeration of the solution space. However quite
a lot of effort may be saved by using one of the following techniques:

e Branch-and-bound: Basically a complete enumeration, but bounds are used for
fathoming nodes that cannot lead to an improved solution. Branch-and-bound
techniques have frequently been applied to Knapsack Problems since Kolesar [42]
presented the first algorithm in 1967.

e Dynamic programming: May be seen as a breadth-first enumeration with the ad-
dition of some dominance rules. Sometimes bounding tests are added to dynamic
programming algorithms whereby they become “advanced” forms of branch-and-
bound algorithms. Interesting time bounds may be obtained by this technique for
several problems in the Knapsack family.

e State space relaxation: Is a dynamic programming relaxation where the coefficients
are scaled by a fixed value. In this way the time and space complexity of an algorithm
may be considerably decreased, at the loss of optimality. State space relaxations
lead to efficient approximate algorithms for several Knapsack Problems.

e Preprocessing: Several variables may be a-priori fixed at their optimal values by
using some bounding tests to exclude certain values of the solution variables.

Ibaraki [35,36] gives a thorough description of these techniques.

This thesis presents theoretical and practical results for several of the above techniques,
when applied to problems from the Knapsack family. Most of the problems considered are
keypseudo-polynomially solvable, i.e. the complexity is bounded by the number of vari-
ables and the magnitude of the largest coefficient in the instance. Here, at the borderline
between NP and P, several interesting results may be obtained: Algorithms that despite
their N"P-hard worst-case complexity have very reasonable solution times for almost any
practically occurring instances.

New enumerative algorithms will be presented, that apply classical as well as newly
developed bounding rules, enumeration schemes and preprocessing methods. Every topic
is thoroughly documented with extensive computational experience.

Although this thesis covers several problems, the family of Knapsack Problems is
very wide and cannot be fully treated here. The book by Martello and Toth [53] covers
several additional classical problems from the family, while Dudzinski and Walukiewicz
[20] cover some more specific generalizations of the problems. Knapsack Problems are
also considered in almost every book on integer programming. Especially the books by
Syslo, Deo and Kowalik [91] and Ibaraki [35,36] give a profound introduction.

1.2. THE PROBLEMS 11

1.2 The Problems

This thesis considers several problems from the family of Knapsack Problems. In all
variants of the problem we have some items with a profit p; and weight w; which are
packed in one or more knapsacks of capacity c. We will assume that all coefficients
pj, wj, ¢ are positive integers although weaker assumptions sometimes may be handled in
the individual problems.

The 0-1 Knapsack Problem is the problem of choosing a subset of the n items such
that the corresponding profit sum is maximized without having the weight sum to exceed
the capacity c. This may be formulated as the following maximization problem:

n
maximize Z DiT;
7j=1
n
subject to ij:cj <cg, (1.1)
7j=1
z; €{0,1}, j=1,...,n,

where z; is a binary variable equalling 1 if item j should be included in the knapsack,
and 0 otherwise.

If we have a bounded amount m; of each item type j, then the Bounded Knapsack
Problem arises as:

n
maximize Z DjT;
j=1
n
subject to Y w;z; <,
=1
z; €{0,1,...,m;}, j=1,...,n

(1.2)

Here z; is the amount of each item type to be included in the knapsack in order to obtain
the largest objective value.

The Unbounded Knapsack Problem is a generalization of the Bounded Knapsack Prob-
lem, where an unlimited number of each item type is available:

n
maximize ijaﬁj
j=1
n
subject to ijxj <c,
=1
z; > 0 integer, j=1,...,n.

Actually, any variable z; of an Unbounded Knapsack Problem will be bounded by the
capacity ¢, as the weight of each item is at least one. But generally there is no advantage
to gain by transforming an Unbounded Knapsack Problem to the bounded version.

Another generalization of the 0-1 Knapsack problem is to choose exactly one item j
from each of k classes N;, © =1,...,k such that the profit sum is maximized. This gives

12 CHAPTER 1. INTRODUCTION

the Multiple-choice Knapsack Problem which is defined as

k
maximize Z Z DijZij

i;leNi
subject to Y > wyzi; <, (1.4)
i=1j€EN;
szjzl’ izl,...,k,
JEN;
xijE{O,l}, i=1,...,k, jEN;.

Here the binary variable z;; = 1 states that item j was chosen from class ¢. The constraint
Yjen; Tij = 1, 1 =1,..., k ensures that exactly one item is chosen from each class.

If the profit p; equals the weight w; for each item in a 0-1 Knapsack Problem we
obtain the Subset-sum Problem, which may be formulated as:

n
maximize Z w;T;
=1
n
subject to Y w;z; <,

j=1
z;€{0,1}, j=1,...,n.

(1.5)

The name indicates that it also may be seen as the problem of choosing a subset of the
values wy, ..., w, such that the sum is as large as possible without exceeding c.

Now, imagine a cashier who has to give back an amount of money ¢ by using the
smallest possible amount of the coins wy,...,w,. The Change-making Problem is then
defined as:

n
minimize Z xj
=1
) " (1.6)
subject to Y wjz; =,
j=1
z; > 0 integer, j=1,...,n,

where w; is the face value of coin j, and we assume that an unlimited amount of each coin
is available. The optimal number of each coin j that should be used is then expressed
by z;. This problem may be considered as a minimization variant of the Unbounded
Knapsack Problem, where p; = 1 for j = 1,...,n, and where equality must hold in the
capacity constraint.

If we shall choose some of n items to pack in m knapsacks of (maybe) different capacity
¢; such that the largest possible profit sum is obtained the Multiple Knapsack Problem

1.2. THE PROBLEMS 13

arises:

m n
maximize Y Y p;&ij
i=1j=1
n

subject to ijxij < ¢, 1= 1, e, M,
=1

m
Z:EZ]SL j:17"'ana
i

=1
331']'6{0,1}, 1=1,....m, 7=1,...,n.

(1.7)

Here x;; = 1 indicates that item j should be packed into knapsack ¢, while the constraint
2?21 w;xi; < ¢; ensures that the capacity constraint of each knapsack is satisfied. The
constraint ;" z;; < 1 ensures that each item is chosen at most once.

A very useful model is the Bin-packing Problem where all n items should be packed
in a number of equally sized bins, such that the number of bins actually used is as small
as possible. Thus we have

n
minimize z Yi
i=1
n

subject to ijxij <cy, 1=1,...,n,

it (1.8)
> oz =1, j=1,...,n,

=1

y; € {0,1}, i=1,...,n,

.’L'ijE{O,l}, 1=1,....m, j=1,...,n,

where y; indicates whether bin 7 is used, and z;; states that item j should be packed in
bin 7. The constraint > ; z;; = 1 ensures that every item is packed exactly once, while
inequality >°7 ; w;z;; < cy; ensures that the capacity constraint holds for all bins actually
used.

The most general form of a Knapsack Problem is the Multi-constrained Knapsack
Problem, which basically is a general Integer Programming Problem where all coefficients
pj, wi; and ¢; are nonnegative integers. Thus it may be formulated as

n
maximize Z DjT;
j=1
n
subject to Zwijxj <g¢, 1=1,...,m, (1.9)
j=1
z; > 0 integer, j=1,...,n.

Other related problems within the family of Knapsack Problems are: The Collapsing
Knapsack Problem which is considered in Fayard and Plateau [25], the Nested Knapsack
Problem treated in Dudzinski and Walukiewicz [20] together with several generalizations,
Morin and Marsten [58] bring some results on Nonlinear Knapsack Problems, and finally
Burkard and Pferschy consider the Inverse-parametric Knapsack Problem in [9]. Although
usually not refered to as a Knapsack Problem, Martello and Toth treats the Generalized
Assignment Problem in [53] using the terminology of Knapsack Problems.

14 CHAPTER 1. INTRODUCTION

1.3 Applications

Knapsack Problems have numerous applications in theory as well as in practice. From a
theoretical point of view, the simple structure pleads for exploitation of numerous inter-
esting properties, that can make the problems easier to solve. Knapsack Problems also
arise as subproblems in several algorithms for more complex combinatorial optimization
problems, and these algorithms will benefit from any improvement in the field of Knapsack
Problems.

Despite its name, practical applications of Knapsack Problems are not limited to
packing problems: Assume that n projects are available to an investor, and that the
profit obtained from the j’th project is p;, j = 1,...,n. It costs w; to invest in project
j, and only ¢ dollars are available. An optimal investment plan may be found by solving
a 0-1 Knapsack Problem.

Another application appear in a restaurant, where a person has to choose k courses,
without surpassing the amount of ¢ calories, his diet prescribes. Assuming that there are
N; dishes to choose among for each course ¢ =1, ..., k, and w;; is the nutritive value while
pi; is a rating saying how well each dish tastes. Then an optimal meal may be found by
solving the Multiple-choice Knapsack Problem [90].

The Bin-packing Problem has been applied for cutting iron bars in a kibbutz [89], in
order to minimize the number of bars used each day. Here w; is the length of each piece
demanded, while c is the length of each bar, as delivered from the factory.

Apart from these simple illustrations we should mention the following major applica-
tions: Problems in cargo loading, cutting stock, budget control, and financial management
may be formulated as Knapsack Problems, where the specific model depends on the side
constraints present. Sinha and Zoltners [90] proposed to use Multiple-choice Knapsack
Problems to select which components should be linked in series in order to maximize fault
tolerance. Diffe and Hellman [17] designed a public cryptography scheme whose security
relies on the difficulty of solving the Subset-sum Problem. Martello and Toth [50] mention
that two-processor scheduling problems may be solved as a Subset-sum Problem. Finally
the Bin-packing Problem may be used for packing envelopes with a fixed weight limit.

The more theoretical applications either appear where a general problem is trans-
formed to a Knapsack Problem, or where the Knapsack Problem appears as subproblem,
e.g. for deriving bounds in a branch-and-bound algorithm designed to solve more com-
plex problems. In the first category G.B. Mathews back in 1897 [56] showed how several
constraints may be aggregated to one single knapsack constraint, making it possible to
solve any IP Problem as a 0-1 Knapsack Problem. Moreover Nauss [60] proposed to
transform nonlinear Knapsack Problems to Multiple-choice Knapsack Problems. In the
second category we should mention that the 0-1 Knapsack Problem appears as a subprob-
lem when solving the Generalized Assignment Problem, which again is heavily used when
solving Vehicle Routing Problems [44]. Also Krarup and Illés [43] apply a knapsack type
relaxation in connection with finite projective planes.

In the following we will elaborate on the theoretical applications, by showing examples
on how combinatorial problems are transformed to Knapsack Problems, and how the latter
appear as subproblems of more complex combinatorial problems.

1.3. APPLICATIONS 15

1.3.1 Merging Constraints

All the Knapsack Problems presented can be viewed as special cases of the general Integer
Programming Problem. It is however interesting to see, that the opposite also holds,
meaning that every system of linear equations with integer coefficients can be transformed
into a single linear equation with the same set of nonnegative integer solutions as the
system to which it corresponds [88]. Thus any IP Problem may be transformed to a 0-1
Knapsack Problem by the following technique:

Consider the following IP Problem with two integer constraints in bounded variables

n

maximize 2 DT
j=1

n
subject to Y wiz; = ¢y, (1.10)

n

Zijxj = Co,

=1

0 <z; <uj, w;integer, j=1,2,...,n,

where we have equality in the constraints, as weaker constraints may be obtained by
adding some slack variables. Let

=C — Zwljx],

(1.11)

=0~ Z W25 Tjs

be the difference between the right and left side of the constraints. By using the bounds
on z; we derive the following bound on g(z)

Zwlju] <g(r) <ep — Zwlju], (1.12)
j=1

where uﬂL = max{wjj, 0} and w;; = min{w;;,0}. If we choose a positive integer A satisfy-
ing

n n
A > max {cl — wajuj, —cy + wajuj} , (1.13)
j=1 j=1
then we have |g(z)| < A\. Now multiply the second constraint in (1.10) with A and add it
to the first constraint, obtaining the following problem

n
maximize Z DjT;
j=1
n
subject to Y _(wi; 4+ Awg;)z; = ¢1 + Ay, (1.14)
7j=1
0 <z; <wuj, z;integer, 7 =1,2,...,n

16 CHAPTER 1. INTRODUCTION

Proposition 1.1 Equations (1.10) and (1.14) have identical sets of nonnegative integer
solutions when A is chosen according to (1.13).

Proof It is evident that (1.10) implies (1.14) for any multiplier A. Thus to prove that
the opposite holds assume that z is a solution to (1.14) with

h(z) = K, (1.15)

where K must be an integer, as the constraints are integral. We wish to prove that when
A is chosen according to (1.13) then K = 0. Note, that the constraint in (1.14) may be
written

g(x) + Ah(z) =0, (1.16)

which by insertion of (1.15) gives g(z) + AK = 0. But A was chosen such that |g(x)| < A
and since K is an integer we must have K = 0. This implies that h(x) = 0 and due to
(1.16) we also have g(x) = 0, so both constraints in (1.10) are satisfied. O

Having shown how to merge two constraints into one, we can repeatedly merge any number
of constraints into a single knapsack constraint. Negative coefficients in the Knapsack
model are easily handled by using the technique described in [53] p. 14. However the
merging of constraints is of limited use due to the rapid growth of the weights w; in
the constraints. Actually, Chvatal [11] showed that if the weights are distributed in a
sufficiently large interval, then any enumerative algorithm will have to consider at least
2m/10 states in order to solve the problem to optimality. Thus the presented technique is
only applicable for a very limited number of constraints and only for moderately sized
weights w;.

1.3.2 Surrogate Relaxation of Set Covering Problems

Let S be a finite set of m elements, and let Sy,..., S, be some given subsets of S. In the
Set Covering Problem we have to choose some of the subsets S; , £k =1,...,¢, such that
we obtain
¢
U S =5, (1.17)
k=1

at least possible cost. It may be formulated as the following minimization problem:

n
minimize Z DjT;
Jj=1

n

subject to Zwijxj >1, i=1,...,m, (1.18)
j=1
z; €{0,1}, j=1,....n,

where w;; = 1 if element 4 is contained in subset S;, and the value p; > 0 is the cost of
choosing subset S;. If this problem is solved through branch-and-bound techniques, one

1.3. APPLICATIONS 17

may derive tight lower bounds by solving the surrogate relaxed problem: Summing the
inequalities in (1.18) with weights m; > 0 we get the problem [35]:

n
minimize Z DjT;

j=1
subject to Z (ZT{'Z’UJU> Zj > Zﬂ'i, (119)
j=1 \i=1 i=1

z; €{0,1}, j=1,...,m,

which is a variant of the 0-1 Knapsack Problem, in which the direction of the inequality
has been reversed. The problem may be solved as an ordinary Knapsack Problem, where
the decision variables z; specifies which items in (1.19) should not be included in the
knapsack.

1.3.3 Tightening Constraints in IP Problems
We consider a general Integer Programming Problem given by

n

maximize Z Dix;
j=1

n

subject to Y wyz; <¢, i=1,...,m, (1.20)
j=1
z; > 0 integer 7=1,...,n,

where p;, w;; and c¢; are nonnegative integers. It is well known that tighter constraints
in (1.20) generally lead to faster solution times. But actually the constraints may be
tightened by solving a series of Subset-sum Problems: For each of the constraints ¢ =
1,...,m we solve the Unbounded Subset-sum Problem given by

n
maximize 2 = Z Wi T 5
j=1

n

subject to Zwijxj S C;, (121)
j=1
z; > 0 integer j=1,...,n,

and if z; < ¢; in an optimal solution, we may tighten the constraint in (1.20) to

n
wiz; <z, i=1,...,m. (1.22)
7j=1

In this way any upper bound derived by continuous relaxation of (1.22) will be closer to
the IP-optimal value, thus speeding up a solution process based on branch-and-bound.

18 CHAPTER 1. INTRODUCTION

solution Ty T2 X3 X4 Tz Tg Xy Ty X9 Zio Ti11 Ti12 13 Ti4 Ti5 Tie
continuous | 1 1 1 1 1 1 1 1 1 035 0 0 0 0 0 0
IP-optimal | 1 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0

Figure 1.1: A typical solution to the 0-1 Knapsack Problem compared to the continuous
solution. The break item is b = 10, and it is seen that those variables, where the two
solution values differ, generally are close to b.

1.4 Fundamental Properties of Knapsack Problems

Knapsack Problems are highly structured, which fortunately implies that several instances
may be solved in fractions of a second despite the worst-case complexity. These structural
properties are essential for the following chapters, and deserve a thorough treatment here.

The perhaps most important property of Knapsack Problems is that the continuous
version of the problems, where the constraints on the variables z; € {0,...,m;} are
relaxed to 0 < z; < m;, are so fast to solve: Back in 1957, Dantzig [13] showed an elegant
way of finding a solution for the continuous 0-1 Knapsack Problem, by ordering the items
according to their profit-to-weight ratio,

biyP2y b (1.23)

- - 7

Wy W W,

and using a greedy algorithm for filling the knapsack: In each step we choose the item
with largest profit-to-weight ratio, until we reach the first item which does not fit into
the knapsack. This item is denoted the break item b and an optimal solution is found
by choosing all items j < b plus a fraction of item b corresponding to the residual ca-
pacity. The preliminary sorting (1.23) can be carried out in O(nlogn) time, meaning
that Dantzig’s algorithm runs in the same time bound, but Balas and Zemel [4] have
shown that the continuous 0-1 Knapsack Problem may be solved in linear time with-
out sorting since b may be found as a weighted median (see [12] exercise 17.2-6). This
result has later been generalized to several of the Knapsack Problems, such that linear
time algorithms are now available for the continuous version of problems (1.1) to (1.8).
The existence of tight and quickly obtainable upper bounds makes it possible to develop
effective branch-and-bound algorithms for solving the problems to optimality.

Another essential property is that, having solved the continuous relaxed problem,
generally only a few decision variables need to be changed in order to obtain the optimal
integer solution. Figure 1.1 shows a typical solution to a 0-1 Knapsack Problem compared
to the continuous solution. Most of the solution values are same, whereas the differing
variables generally are close to the break item. This behavior has been documented in
several computational experiments, and motivated Balas and Zemel [4] to propose that
only a few variables around b are considered in order to solve the Knapsack Problem to
optimality. This problem was denoted the core problem and has been an essential part
of all efficient algorithms for Knapsack Problems. In Chapter 6 it will be shown that it
is important how a core is chosen, as degeneration may occur, leading to intrinsic hard
problems.

By using dynamic programming several of the Knapsack Problems are solvable in

1.4. FUNDAMENTAL PROPERTIES OF KNAPSACK PROBLEMS 19

pseudo-polynomial time, i.e. in a time bounded in the number of items and the largest
coefficient in the instance. Actually we know that problems (1.1) to (1.6) are pseudo-
polynomially solvable, whereas the remaining problems are NP-hard in the strong sense,
meaning that pseudo-polynomial algorithms cannot be devised unless NP = P. The dom-
inance relations in dynamic programming algorithms are generally very efficient, making
it possible to fathom several infeasible states. By incorporating bounding tests in the
dynamic programming, very efficient algorithms may be developed.

Another important property of Knapsack Problems is that they are separable, as
observed by Horowitz and Sahni [33], which means that a 0-1 Knapsack Problem may
be solved in O(1/2") worst-case time, by dividing the items in two sets, enumerating all
feasible solutions in each of the sets, and then merging the two sets of feasible solutions. In
this way we get an improvement over a complete enumeration by a factor of a square-root.
Although this bound is still exponential, the consequence of this observation is that we
may solve a 0-1 Knapsack Problem through parallel computation by recursively dividing
the problem in two parts. The resulting algorithm runs in O(lognlogc), as mentioned
in Kindervater and Lenstra [41], which is probably the best one can hope for, but the
number of processors required is huge.

For all the Knapsack Problems, efficient reduction algorithms have been developed,
which enable one to fix several decision variables at their optimal values before the problem
is solved, thus considerably decreasing the size of an instance. Basically, these tests may
be viewed as a special case of the branch-and-bound technique; for each 0-1 variable, we
test both branches, fathoming one of them if a bounding test shows that a better solution
cannot be found. See Martello and Toth [53] for a thorough treatment of reduction
techniques.

In Chapter 10 it will be proved, that the Subset-sum Problem and the 0-1 Knapsack
Problem are solvable in linear time provided that the weights w; are bounded by a con-
stant. Apart from giving a good clue as to how these problems may be efficiently solved,
the complexity gives a unique characterization of the one-dimensional Knapsack Prob-
lems: The weights w; need to be exponentially growing in order to obtain exponential
solution times. As mentioned in Section 1.3.1, Chvétal [11] proved that if all coefficients
of a Knapsack Problem are exponentially growing, and if the profit equals the weight
for each item, then no bounding and no dominance relations will stop the enumerative
process before at least (2"/ 19) nodes have been enumerated, thus implying strictly expo-
nentially growing computational times. Actually a tighter lower bound may be derived,
but Chvatal truncates the derived bounds in order to keep the proofs simple.

Seen in this light, perhaps too much effort has previously been used on the solution
of easy data instances. Recent research has thus concentrated on the solution of hard
Knapsack Problems. Pandit and Ravi Kumar [63] used lexicographic search for solving
the so-called strongly correlated data instances but, as this technique is not applicable
for general Knapsack Problems, Martello and Toth [55] developed an algorithm based on
cutting-plane techniques for generating additional constraints to the problem. Bounds for
the tightened problem are obtained through Lagrangean relaxation.

From an industrial point of view, the main issue in Knapsack Problems is that easy
problem types (0-1 Knapsack Problem etc.) have been intensively studied, although real-

20 CHAPTER 1. INTRODUCTION

life problems usually are considerably more complex. The Multiple Knapsack Problem,
which is very important in naval applications, has only been considered by a few authors.
Future research should be concentrated on the solution of complex Knapsack Problems
as well as hard data instances. The prospects are quite bright, as results from the easier
Knapsack Problems immediately may be propagated to the harder problems. For instance
Martello and Toth [53] have developed a branch-and-bound algorithm for the Multiple
Knapsack Problem, which requires the solution of a 0-1 Knapsack Problem each time an
upper or lower bound is determined.

As current algorithms generally behave well for some instances and poorly for others,
we should focus future research on the development of robust algorithms for several Knap-
sack Problems, which are able to solve even strongly correlated data instances efficiently.
This may be obtained by developing algorithms where the complexity is bounded in the
magnitude of the coefficients, or the size of the core. Although such bounds in the worst
case degenerate to exponential solution times, they allow us to segregate several groups
of easily solvable instances.

1.5 Classes of Data Instances

Throughout this thesis we will consider randomly generated data instances, that basically
are constructed in the same way. The instances have been constructed to reflect special
properties, that may influence the solution process. Thus we will here discuss the nature
of each of the instances.

Uncorrelated data instances: In these instances there is no correlation between the
profit and weight of an item. Such instances illustrate those situations, where it is reason-
able to assume that the profit does not depend on the weight, for example when somebody
is loading his possessions into a container: Small things may be very valuable, whereas
the opposite may apply for more bulky items.

Uncorrelated instances are generally easy to solve, as there is a large variation between
the weights, making it easy to obtain a filled knapsack. Moreover it is easy to eliminate
numerous variables by upper bound tests or by dominance relations.

Weakly correlated instances: Here the profit is highly correlated with the weight.
Typically the profit only differ from the weight by a couple of percent.

1.5. CLASSES OF DATA INSTANCES 21

Dj

Such instances are perhaps the most realistic in management, since the return of an
investment generally is proportional to the invested sum within some small variations.

The high correlation means, that it is generally difficult to eliminate variables by upper
bound tests. Despite this fact, weakly correlated instances are usually easy to solve, since
there is a large variation in the weights, making it easy to obtain a filled knapsack, and
filled solutions are generally very close to an optimal solution due to the correlation.

Strongly correlated instances: Such instances correspond to a real-life situation where
the return is a linear function of the investment plus (or minus) some fixed charge incured
by each project.

Dj /

wy

Strongly correlated instances of Knapsack Problems are hard to solve for two reasons: 1)
All the items around the break item have similar weights, meaning that it is very difficult
to combine them such that a filled knapsack is obtained. 2) There is a very large relative
loss by removing the small weighted items, meaning that we generally cannot remove any
small items in order to make space for a large item which fills out the knapsack. Thus
strongly correlated instances are generally used as a measure of an algorithm’s ability to
solve difficult problems.

Note that the ordering (1.23) according to nonincreasing profit-to-weight ratios for
strongly correlated instances (with positive fixed charge) corresponds to an ordering ac-
cording to nondecreasing weights. Thus in the 0-1 Knapsack Problem case it is relatively
easy to impose an additional constraint on the problem as:

oz <b-1, (1.24)
j=1

where b is the index of the break item. The constraint says that no solution will contain
more than b — 1 items, as the first b — 1 items are the lightest items, and any solution
involving heavier items will of course comprise fewer items. Similar constraints with

22 CHAPTER 1. INTRODUCTION

opposite inequalities can be imposed in those situations where there is a negative fixed
charge involved in the return of each project.

Based on this observation Martello and Toth [55] recently developed an efficient algo-
rithm for solving strongly correlated instances. But it is obvious, that if just a few items
do not follow the nice structure of a strongly correlated instance, then the constraint
(1.24) will be too weak to have any effect.

Subset-sum instances: These instances reflect the situation where the profit of each
item is a linear function of the weight. Thus our only goal is to obtain a filled knapsack.

Dj

Subset-sum instances are however difficult to solve, as any upper bound returns the same
trivial value ¢, thus we cannot use bounding rules for cutting off branches before an optimal
solution has been found. On the other hand large randomly generated instances generally
have many optimal solutions, meaning that any permutation algorithm will easily reach
optimum.

The four types of instances are distinguished by their correlation between profits and
weights. As will be seen from the time bounds derived for each of the presented algorithms,
the hardness of an instance however also depends on the number n of items, the range R
of the weights, and the magnitude of the knapsack capacity c.

1.6 Approximate Algorithms

Although approximate algorithms are not the theme of this thesis, some important results
should be mentioned. As all the Knapsack Problems are N"P-hard, some instances may be
impossible to solve to optimality within a reasonable amount of time. In such situations
one may be interested in an approximate solution with objective value z, where the relative
error is bounded from above by a certain constant e, i.e.

z—z*

——<¢ (1.25)
where z* is the optimal objective value. The ultimate approximation algorithms are called
fully polynomial approximation schemes. Such algorithms must satisfy that for any € > 0
they find a feasible solution satisfying (1.25) in time polynomially bounded by the size of
the problem and by 1/e.

Fully polynomial approximation schemes cannot be found for AP-hard problems in
the strong sense, except if NP = P (see Ibaraki [36] p. 502 for a proof). Thus we cannot

1.6. APPROXIMATE ALGORITHMS 23

expect to find fully polynomial approximation schemes for e.g. the Multiple Knapsack
Problem or the Multidimensional Knapsack Problem. On the other hand, for those Knap-
sack Problems that are pseudo-polynomially solvable, fully polynomial approximations
schemes have actually been found. For illustration we describe an algorithm for the 0-1
Knapsack problem:

1.6.1 Fully Polynomial Approximation Schemes

Ibarra and Kim [37] presented the first fully polynomial approximation scheme for the 0-1
Knapsack problem. Thus for any bound ¢ > 0 the algorithm finds a heuristic solution z
with relative error at most €, such that the time and space complexity grows polynomially
with n and 1/e.

The Ibarra and Kim algorithm is based on dynamic programming, where state space
relaxation (see Ibaraki [36] for a thorough treatment of this field) is used in order to limit
the number of possible states. Since the relative error by scaling profits is largest for the
small profits, Ibarra and Kim divides the items into those with large profits, and those with
small profits. The first group of items is enumerated through dynamic programming, and
a greedy algorithm is used to improve the enumerated states by adding some additional
items from the second group of the items.

Algorithm 1.1 (Ibarra and Kim [37]) Assume that the items are ordered according to
nonincreasing profit-to-weight ratios
4! D2 Dn

As2s > (1.26)
w1 W9 Wnp,

and let the break item b be defined as

b:min{j:zj:wi>c}. (1.27)

i=1
It E;’-j w; = c then the break solution z = Z?j p; is optimal, and the algorithm halts.
Otherwise let z = E?lej be an upper bound on the objective value. Obviously an
optimal solution z* must satisfy

2/2< 2" < 2, (1.28)

since z* > max{Z — py, pp}, thus 22* > Z. We use Z for partitioning the items in two
groups such that
p; > Ze/3, for j=1,... s,

p; < Ze/3, for j=s+1,...,n (1.29)

still preserving the ordering (1.26) on each of the intervals.

We will use state space relaxation for the dynamic programming algorithm, thus scale
the profits with a factor § = Z(e/3)?, obtaining p; = pj/d], forj=1,...,5. As Zis an
upper bound on the objective value we cannot obtain larger profits than ¢ = |Z/6]| =
| (3/€)?] in the dynamic programming. Let f;(7), (0 < 7 < g, 0 < < s) be the smallest

24 CHAPTER 1. INTRODUCTION

weight sum, such that a solution with scaled profit sum equal to 7 can be obtained on
the variables j = 1,...,4. Thus

fi(m) = min{iwj : if_’jxj =7, z; €{0,1},5=1,.. ,z} (1.30)

=1 j=1

We use the recursion

_J fia(m) for 7m=0,...,p, —1
() _{ mi;{fi—l(ﬂ)a fici(m = p;) +w;} for m=7p;,...,¢q }’ (1.31)

while we set fo(m) = oo for m = 1,...,¢ and fy(0) = 0. Now for all states fy(7), 7 =
0,...,q where f,(m) # oo find a greedy solution by inserting some items j = s+1,...,n
into the knapsack to fill the residual capacity ¢ — fs(7). Let z be the objective value of
the best heuristic solution obtained this way.

Proposition 1.2 The space and time complexity of the Ibarra and Kim algorithm is
O(n/€®) and hence polynomial in n and 1/e.

Proof The dynamic programming part considers ¢ = [(3/€)?] states at each stage of
i=1,...,s, which gives the space complexity O(ng), i.e. O(n/e?).

The time complexity is O(ngq) for the dynamic programming, while the heuristic filling
demands considering n — s items for each value of 7 = 0,...,q, giving the complexity
O(ng). Thus we get a time bound O(n/€?). Actually the time bound should also embrace
the initial sorting, which however obviously is polynomial in n. O

Proposition 1.3 For any instance of KP we have (z* —z)/z* < € where z* is the optimal
solution value and z is the heuristic value returned by the above algorithm.

Proof See Ibarra and Kim [37] for a proof, or Appendix A of this Chapter for a proof
using the terminology of the present thesis. O

1.6.2 Other Heuristics

According to Martello and Toth [53] the running times and solution quality of the fully
polynomial approximation scheme described in Algorithm 1.1 are considerably worse than
for heuristics based on partial enumeration. Thus although the latter seldom are able to
give a worst-case performance like (1.25) they perform extremely well for several practi-
cally occurring data instances.

Partial enumeration techniques are based on an exact enumeration algorithm like
branch-and-bound or dynamic programming, where the enumeration is terminated before
optimality has been found or proved. Ibaraki [36] p.468 presents the following strategies:

e c-allowance method: The upper bound tests are strengthened by fathoming nodes
with upper bound u < z4¢€ where z is the current solution, and ¢ is a given tolerance.

1.7. OVERVIEW OF THE THESIS 25

e Cut method: The enumeration is terminated after a given amount of nodes have
been enumerated, returning the currently best solution.

All exact algorithms presented in this thesis may be modified to approximate algorithms
by incorporating one of the above techniques. Several exact algorithms from the liter-
ature, e.g. those presented in Martello and Toth [53], have been adapted for deriving
approximate solutions based on the above techniques.

Heuristics based on local search techniques have also been applied to the Knapsack
Problems (e.g. Hinrichsen [31]), but such approaches are seldomly able to fully exploit
the structural properties that apply for the Knapsack Problems. Local search algorithms
are seldomly able to find better solutions than those obtained by a greedy algorithm.
Note however, that greedy algorithms actually perform very well for large instances of
Knapsack Problems.

1.7 Overview of the Thesis

The purpose of this thesis is to develop algorithms with complexity bounded by some
appropriate measure of the “hardness” of each instance, e.g. the magnitude of the coeffi-
cients, the size of a minimal core, or the number of undominated items. The motivation
for doing this may be difficult to figure out since

...exact algorithms, capable of solving large scaled instances of several Knapsack
Problems in a fraction of a second, are already available.

...the time bounds degenerate to exponential complexity in the worst case, and
thus cannot be used for anything in the worst-case situation.

The last objection has an easy answer, as for most real-world instances, the actual time
bounds are very reasonable indeed as e.g. the coefficients are small. An important part
of this thesis has been to demonstrate, that several well reputed algorithms suddenly
may demand exponential solution times for instance types, that usually are solved in
fractions of a second. This observation also answers the first objection above, as for
existing algorithms it may be almost impossible to predict which instances will be hard
to solve. On the other hand all algorithms presented in this thesis generally have similar
behavior for similar data instances due to the time bounds obtained.

Recently Martello and Toth [55] presented a new algorithm for the 0-1 Knapsack
Problem which shows promising solution times for several categories of instances. But
since the algorithm is based on a branch-and-bound enumeration we basically do not have
any other worst-case time bound than a complete enumeration in exponential time. Thus
although the algorithm behaves well for strongly correlated instances, as it is possible to
generate some additional constraints to the problem in these situations, we actually do
not know how the algorithm will behave if only a single item weight is changed.

Our search for time bounded algorithms will of course also lead to a presentation of
new and tighter upper bounds, efficient reduction algorithms, and original enumeration
schemes. As a byproduct, a thorough empirical evidence of the nature of each problem
type has been achieved, opening up for further improvements in this field.

26 CHAPTER 1. INTRODUCTION

A complete treatment of all Knapsack Problems is beyond the scope of this thesis, but
several of the problems presented in Section 1.2 will be considered. Problems from the
0-1 Knapsack Problem to the Multiple Knapsack Problem will be considered as follows:

An Expanding-core Algorithm for the 0-1 Knapsack Problem

As mentioned in Section 1.4, all currently most successful algorithms are solving some
kind of core problem — an ordinary Knapsack Problem defined on a small collection of
items where there is a high probability for finding an optimal solution. However since the
optimal choice of a core demands knowledge about the optimal solution, no best choice of
a core has been presented in the previous literature. In Chapter 2 we present an algorithm
which starts with a core containing only the break item b and successively expands the
core whenever needed. In this way the complexity may be bounded by O(n + 2I¢!) for a
core C'. Thus easy problems with small core sizes will have a linear solution time. There
is however no guarantee, that the obtained core C' is minimal, and actually the depth-
first search of the branch-and-bound algorithm may follow a branch, which demands a
complete enumeration.

What distinguishes this work from previous papers on the 0-1 Knapsack Problem is
that the algorithm is simple (only about 200 lines), despite having all the properties
of previous algorithms. Since the core size is found adaptively, we obtain an algorithm
which, as documented by the computational experiments, behaves stable for all types
of instances. Actually most data instances are solved to optimality without sorting or
preprocessing a great majority of the items.

Several fundamental observations, which play a central role for the further work, are
made in this chapter. The “expanding core” is used in Chapter 4 for deriving an algo-
rithm which enumerates a minimal core. Balanced operations for filling a knapsack, as
introduced in Proposition 2.1, will be used in Chapter 10 for showing that the Subset-sum
Problem is solvable in linear time for any fixed range of weights. Finally this chapter gives
a thorough insight into the structure of optimal solutions to the 0-1 Knapsack Problem.
Chapter 2 is based on [75].

Solving hard Knapsack Problems

Chapter 3, which is based on [68], considers the solution of hard 0-1 Knapsack Problems.
Hard instances are characterized by having exponentially growing coefficients, such that
any pseudo-polynomial time bound is useless. The best known complexity for such in-
stances is O(y/2") as presented in Horowitz and Sahni [33], since the items may be divided
into two equally large sets, that are enumerated independently. This idea is however gen-
eralized further, such that we recursively divide the items in two sets, until each set only
contains one item. In this way we obtain a highly parallel algorithm, and enumerative
bounds as presented in Martello and Toth [52] may be generalized to this approach. The
algorithm shows promising results for hard data instances, as the so-called AvVIiS problems
can be solved up to n = 50 variables. Also the so-called strongly correlated problems are
solved up to average size (n = 1000) but the computational times are not as promising as

1.7. OVERVIEW OF THE THESIS 27

those presented in Chapter 4. For strongly correlated instances, it seems that the pseudo-
polynomial time bound is more important than the enumerative bound O(y/2"), and here
the presented algorithm runs in O(nc?), whereas the algorithm presented in Chapter 4
has complexity O(nc).

The main results attained in this chapter are: The solution of larger AvIS type prob-
lems than ever reported before, a highly parallel algorithm, and the generalization of
enumerative upper bounds to a parallel approach. Also this work presents a generalized
reduction, which may be useful in other connections.

A Minimal Algorithm for the 0-1 Knapsack Problem

The minimal algorithm presented in Chapter 4 may be seen as a synthesis of the two
previous chapters. The results obtained however are surprising: it is possible to obtain an
algorithm for the 0-1 Knapsack Problem which solves the problem to proved optimality
with a minimal core. Thus we have the complexity O(n +min{2/° |C|c}) for a minimal
core C'. This is an essential bound as described in the intoduction, since we have the worst-
case behavior bounded in two measures of “hardness”: The capacity ¢, and the minimal
core C'. Several empirical results show that these quantities are similar for similar data
instances, implying a stable behavior. For easy instances with a negligible core size, we
obtain a linear solution time.

The algorithm is based on a “lazy” approach, where dynamic programming is used
to enumerate an expanding-core, and where new items are reduced, sorted and added to
the core when needed. In this way we are actually able to prove that a minimal core
is enumerated, and that only the strictly necessary effort is used for the preprocessing
(reduction and sorting).

Numerous computational experiments are presented, showing promising solution times
for even strongly correlated data instances of size up to n = 100000. All easy instances
are solved in less than 0.20 seconds for instances up to size n = 100000. The Chapter is
based on [66,67,82].

Avoiding Anomalies in the MT2 Algorithm by Martello and Toth

In the previous chapters, it has been observed that the MT2 algorithm by Martello and
Toth [52] behaves unstable even for easy problem instances. Thus in Chapter 5 we try to
identify those problems, that cause an anomalous behavior, and show how these problems
may be evaded by using a linear-time greedy heuristic, instead of solving a core problem.
In this way we obtain more stable solution times for MT2, at the cost of a slight increase
of the solution times.

Martello and Toth [55] have independently solved the stability problem in a different
way, by imposing an upper bound on the number of nodes the branch-and-bound algo-
rithm may use for solving the core problem. In this way, the enumeration will never be
stuck in a difficult core, but unfortunately this approach does not give us any insight

about which structural problems actually cause the exponential solution times. Chapter
5 has been published in [77].

28 CHAPTER 1. INTRODUCTION

Core Problems in Knapsack Algorithms

Chapter 6 shows some fundamental properties of core problems, that are of vital signifi-
cance for any algorithm applying this approach. The Chapter is based on [70,83] and the
results have been presented at Pisa University [74].

Balas and Zemel [4] has proven, that there is a high probability for finding an optimal
solution in the core, thus avoiding to consider the remaining items in most instances. But
the proof was based on a tacit assumption that the profits and weights of the items are
distributed such that there is no correlation between the profit-to-weight ratio and the
weight, as illustrated in the following figure:

Dj

— w,

But even for randomly generated data instances (cf. Section 1.5), this assumption does
not hold, meaning that the core problem may degenerate. In such situations it is very
difficult to obtain a reasonable solution in the core, implying exponential solution times
as observed in the previous chapter.

This behavior has not been observed before due to inadequate testing, since the ca-
pacity of the knapsack is usually chosen such that the core problem becomes as easy as
possible. Thus we propose some new series of randomly generated data instances, which
give a better picture of the expected performance of algorithms. These tests are applied
to four different algorithms from the literature, showing that the MINKNAP algorithm
presented in Chapter 4 has the most stable behavior.

A Minimal Algorithms for the Multiple-choice Knapsack Prob-
lem

In Chapter 7 we generalize the results from Chapter 4 to the Multiple-choice Knapsack
Problem. This task is not easy, as no author previously has defined what a core problem
actually is for these problems. Martello and Toth [53] points out that a complete reduction
seems essential for the effective solution of these problems, thus somehow ruling out the
benefits of solving a core problem.

1.7. OVERVIEW OF THE THESIS 29

The presented algorithm considers so-called gradients in order to define a core. For
each class the gradients express the expected gain (or loss) per weight unit by choosing
a heavier or lighter item than the LP-optimal choice in that class. It is demonstrated
that the more a gradient differs from the gradient of the break class the smaller is the
probability for changes in that class. Thus a greedy approach should first consider those
classes which have gradients closest to that of the break class.

We present some new upper bounds, that may be derived in constant time by consid-
ering the gradients, and apply them in a dynamic programming algorithm. In this way a
very efficient algorithm is obtained which runs in O(n 4 ¢ X y.cc ni) where n; is the size
of class NV;, and C' is a minimal core. Thus the complexity is bounded in the magnitude
of the coefficients, the core size, and the number of (undominated) items in each class.

Computational experiments are reported, showing that the presented algorithm solves
easy problems with up to n = 10000 classes of each 10 items in a fraction of a second.
Strongly correlated instances of a similar size are solved in about half an hour. Chap-
ter 7 is based on [81,69] and has been presented at the EURO Summer Institute X on
Combinatorial Optimization [73].

A Minimal Algorithm for the Bounded Knapsack Problem

Chapter 8, which is based on [71,78|, shows that the results obtained in Chapter 4, may
be generalized to the Bounded Knapsack Problem.

The currently most efficient algorithm for the Bounded Knapsack Problem transforms
the instance to a 0-1 Knapsack Problem [53], which is solved in a usual way. In this
chapter it is demonstrated that the transformation actually results in very hard instances
of the 0-1 Knapsack Problem, except for those instances where the capacity is chosen as
one half of the total weight sum. Instead we therefore propose a specialized algorithm,
which fully exploit the special structure of Bounded Knapsack Problems.

A new dynamic programming recursion is presented, which runs in O(nclogc) time,
and some efficient reduction criteria for the involved variables are provided. In this way
a very efficient algorithm is derived, which solves easy instances with up to n = 100000
item types with up to 10 items of each type, in less than 0.50 second. Even strongly
correlated instances are solved efficiently up to large sizes, but these demand some more
computational time.

The developed algorithm has time complexity bounded by

O(n 4+ min{my - --my, |C|clogc}), (1.32)

for a core C' containing variables z, ..., z;. Here m; is the bound on variable z;. Notice,
that the term O(n) is dominant for small core sizes, leading to linear solution times for
easy instances.

Dominance Relations in Unbounded Knapsack Problems

Martello and Toth [54] has shown that the size of Unbounded Knapsack Problems may be
considerably decreased by using some dominance relations for fathoming infeasible item

30 CHAPTER 1. INTRODUCTION

types. By this preprocessing several instances may be reduced to trivially solvable prob-
lems. In Chapter 9 we present a more general reduction scheme than the one presented
in [54]. The presentation is based on [72].

The reduction algorithm of Martello and Toth runs in O(n?), but may be improved to
O(mmn) as proposed by Dudzinski [18], where m is the number of undominated item types.
The first reduction is based on an ordering of the item types according to nonincreasing
profit-to-weight ratios, while the second reduction does not demand any ordering. The
new reduction however is based on an ordering according to nondecreasing weights, which
allow us to surpass some item types, that cannot dominate a given item.

The time bound of the developed reduction algorithm is O(nlogn + min(mn, Dn)),
where D is the ratio between the largest and the smallest weight, and m is the number of
undominated item types. The computational experiments indicate, that the two bounds
O(mn) and O(Dn) supplement each other well, such that most problems are reduced very
efficiently.

The algorithm is compared to the reduction algorithms by Martello and Toth [54] and
Dudzinski [18] showing that the presented algorithm is orders of magnitude faster than
the two previous algorithms for hard instances. Moreover we identify several categories
of problems, that cannot be reduced as efficiently as described by Martello and Toth.
Such problems may play an important role in the testing of future algorithms for the
Unbounded Knapsack Problem.

Subset-sum Problems

In Chapter 10 we consider the Subset-sum Problem. Here a very strong result is presented,
showing that if the weights are bounded by a constant r, then we may solve the problem
in linear time O(nr).

The algorithm is based on some early results from Chapter 2 where it was shown
that an optimal solution to the 0-1 Knapsack Problem, and thus also to the Subset-sum
Problem, may be obtain through balanced operations. This balancing ensures that no
weight sum differing more than r from the capacity ¢ need to be considered, and by using
dominance and memorizing of previously defined states, we obtain the stated complexity.

The results are easily generalized to the 0-1 Knapsack, where we prove that the 0-1
Knapsack Problem is solvable in linear time if the weights are bounded by a constant r.
Actually the time bound is O(nr?) which is slightly worse than the bound for Subset-sum
Problems.

The developed algorithm is extremely simple to implement, and computational exper-
iments document its superiority for hard problem types. It is discussed how the algorithm
may be improved by using dynamic programming by reaching instead of dynamic pro-
gramming by pulling, or loosely speaking, only to consider those weight sums that actually
are obtainable. Chapter 10 is based on [76] and has been presented in Copenhagen [79].

1.8. CONCLUSION 31

An exact Algorithm for large Multiple Knapsack Problems

Multiple Knapsack Problems are considered in Chapter 11. As previously mentioned, the
Multiple Knapsack Problem is NP-hard in the strong sense, so we cannot immediately
use the techniques from the previous chapters, as e.g. dynamic programming will lead to
strictly exponential computational times. A relaxation of the constraints however lead to
problems that have been treated in the previous chapters.

It is demonstrated that tight upper bounds may be derived by surrogate relaxation,
which requires the solution of several 0-1 Knapsack Problems. Thus the results from
Chapter 4 are immediately applicable. On the other hand tight lower bounds are con-
structed by solving a series of Subset-sum Problems. To tighten the gap between upper
and lower bounds, we use the technique of tightening capacity constraints described in
Section 1.3.3. In both cases, the resulting Subset-sum Problems are solved using a new
separable dynamic programming algorithm.

Since dynamic programming is inefficient for problems which are ANP-hard in the
strong sense, we use branch-and-bound techniques for the enumerative part of the algo-
rithm. The computational experiments demonstrate a unique behavior of the algorithm,
since problems with up to n = 100000 variables may be solved fastly. Chapter 11 will be
presented at the NOAS’95 conference, Reykjavik [80].

1.8 Conclusion

Knapsack Problems give an excellent insight into the complexity of problems between
NP and P. The result presented in Chapter 10 shows that all the complexity of one-
dimensional Knapsack Problems is “hidden” in the magnitude of the coefficients, meaning
that several practically occurring problems may be solved efficiently despite their worst-
case complexity, provided that they involve moderate coefficients. On the other hand
Section 1.3.1 has demonstrated, that if general IP Problems are merged to Knapsack
Problems, then we actually obtain the worst-case complexity. Thus Knapsack Problems
cannot solely be used for solving general IP Problems, although they occur in several
more complex algorithms by relaxation.

It is evidently difficult to give time-bounds for N"P-hard problems, but we have at-
tempted to propose meaningful complexity measures, by bounding the worst-case com-
plexity in the “hardness” of an instance, e.g. the magnitude of coefficients, the size of
a minimal core, or the number of undominated items. Although these bounds are ex-
ponential in the worst case, they allow us to segregate several groups of easily solvable
instances, and as all problems considered (except the Multiple Knapsack Problem) are
pseudo-polynomially solvable, we may guarantee reasonable solution times for all instances
having moderate coefficient sizes.

Several problems from the Knapsack family have been considered in this thesis, but
numerous problems are still open. It seems promising to generalize several of the results
obtained to algorithms for the Unbounded Knapsack Problem, the Bin-packing Problem,
or the Change-making Problem. Also, approximate algorithms have not been considered

32 CHAPTER 1. INTRODUCTION

at length in this thesis, where especially the results presented in Chapter 10 may lead to
improved algorithms.

Appendix A: Proof of worst-case error

Proposition For any instance of KP in Algorithm 1.1 we have (z* — z)/2* < € where z*
is the optimal solution value and z is the heuristic value returned by the above algorithm.

Proof If the algorithm terminates in the initial phase with z = Z?;ﬁ p; we have an
optimal objective value. Otherwise the optimal solution z* must be given as

2= pir +a, (1.33)

i=1

where « is the contribution from the greedy filling. Let w* = 37;_; w;z} be the weight sum,
and p* = }7_; p;x; the scaled profit sum of the first s variables of the optimal solution.
Obviously fs(p*) # oo in the dynamic programming, and fs(p*) < w* by definition (1.30).

Let z' be the solution vector corresponding to fs(p*). Then in the greedy filling we
obtained a solution

2= pjxi+ 0, (1.34)
j=1

with 3 as the contribution from the greedy filling. This means that the heuristic solution
z must satisfy z > 2.

As a consequence of the truncation p; = [p;/d] we have p;0 < p; < (p; +1)¢ and
since p; = |p;/0] > 3/€ we get (p; +1)0 = p;06(141/p;) < D;6(1+¢/3). By inserting the
bound ;6 < p; <p;6(1 + €/3) in equations (1.33) and (1.34) we get

Po+a=) pior; <z <) p6(1+¢/3)x; =p"0(1+¢/3) + o,

] : (1.35)
Po+B=> p6x <2 <Y pio(1+¢/3)z; <p(1+¢€/3)+ 5,
=1 i=1
which yields

* ! =¥ _ _
¥ —2z §p56/3+(04 ﬂ)§%€+a [3. (1.36)

z* z* z*
Since the items s+ 1,...,n are ordered according to (1.26) the term (o —) cannot be

greater than the maximum profit of an item in this interval, i.e. a — 3 < Ze/3, hence
(2 —2')/z* < (1+2/z*)e/3. Since the heuristic solution satisfies z > 2’ and Z < 22* due
to (1.28) we get (2* — 2)/z* <e. O

Chapter 2

An Expanding-core Algorithm for
the 0-1 Knapsack Problem

A new branch-and-bound algorithm for the exact solution of the 0-1 Knapsack
Problem is presented. The algorithm is based on solving an “expanding core”, which
initially only contains the break item, but which is expanded each time the branch-
and-bound algorithm reaches the border of the core. Computational experiments
show that most data instances are optimally solved without sorting or preprocessing
a great majority of the items. Detailed program sketches are provided, and com-
putational experiments are reported, indicating that the algorithm presented not
only is shorter, but also faster and more stable than any other algorithm hitherto
proposed.

Keywords: Knapsack Problem, Branch-and-bound, Reduction.

2.1 Introduction

Given n items to pack in some knapsack of capacity c. Each item j has a profit p; and
weight w;, and we wish to maximize the profit sum without having the weight sum to
exceed c. More formally we define the 0-1 Knapsack Problem by

n
maximize z = ij:rj
j=1

n

subject to Y wj;z; <c (2.1)
=1
z;e{0,1}, j=1,...,n,

where all data are positive integers. In the following we will denote the Knapsack Problem
by KP. Without loss of generality we may assume that w; <c¢, for j =1,...,n to ensure
that each item considered fits into the knapsack, and that >°7_; w; > ¢ to avoid trivial
solutions.

Many industrial problems can be formulated as Knapsack Problems: Cargo loading,
cutting stock, project selection, and budget control to mention a few examples. Many

33

34 CHAPTER 2. AN EXPANDING-CORE ALGORITHM FOR THE 0-1 KP

combinatorial problems can be reduced to KP, and KP arises also as a subproblem in
several algorithms of integer linear programming.

KP is N'P-hard (see Garey and Johnson [29]) and it is therefore very unlikely that a
polynomial time algorithm can be devised. Still KP can be solved in pseudo-polynomial
time by dynamic programming (Papadimitriou [64]). The problem has been intensively
studied in the last decades due to its theoretical interest and its wide applicability. For
recent surveys see Dudzinski and Walukiewicz [20] and Martello and Toth [53].

In the following we will assume, that the items are ordered according to nonincreasing
efficiencies e; = p;/wj, thus

e; > e; when i<j. (2.2)

Although there may be several orderings satisfying (2.2), when some items have the same
efficiency, we will assume, that one particular ordering has been chosen. To simplify
notation, we will define the profit sum p; and the weight sum w; of items up to j by:

J
pj = Zpla j=0,...,n, (23)
i=1
J
w; = Y w, j=0,...,m (2.4)
i=1
Packing a knapsack in a greedy way means, to include items 7 = 1,2,..., as long as

w; < ¢c—W;_1, i.e. as far as the next item fits into the unused capacity of the knapsack.
The first item which cannot be included in the knapsack is denoted the break item b (by
some authors called the critical item). Thus the break item satisfies

Wy—1 < ¢ < Wp. (2.5)

The break solution 2’ = {', ...z} is the solution which occurs when setting z’; = 1 for
j=1,...,b—1and x; =0 for j =b,...,n. The unused capacity of the break solution is
called the residual capacity r, and is defined by

r=c—Wpy_1- (2.6)
By linear relaxation Dantzig [13] showed that an upper bound on KP is
_ T
w= By + L2, 27)

where |z| is the greatest integer less than or equal to z. This bound is known as the
Dantzig (upper) bound.

In the following section we will illustrate some main properties of typical solutions to
the Knapsack Problem, and use these results for sketching a new algorithm in Section
2.3. Fundamental parts of the algorithm are described in Sections 2.4 to 2.6, while the
main algorithm is sketched in Section 2.7. Computational experiments are presented in
Section 2.8, followed by a conclusion.

2.2. PROPERTIES OF SOLUTIONS TO KP 35

frequency
50%t '
10%; x
i |
100 b 1000 7

Figure 2.1: Frequency of items j where the optimal solution z; differ from the break
solution 7.

2.2 Properties of solutions to KP

To illustrate some main properties of solutions to the Knapsack Problem, we have per-
formed the following computational experiment: 1000 data instances were constructed
with n = 1000, p; and w; randomly distributed in [1,1000], and the capacity ¢ chosen
such that b = 500 for all instances. Each data instance was completely sorted according to
(2.2), and then solved by a simple branch-and-bound algorithm. We recorded the average
number of items where the optimal solution z; was differing from the break solution x;
(Figure 2.1) as well as the mean value of the corresponding weights (Figure 2.2).

It turned out, that the number of items where z; # x; is only about 3.4 in mean per
instance, and as seen from Figure 2.1, such items are generally very close to the break
item b. Only a few variables far from b differ from the break solution, and according to
Figure 2.2, the weights of the corresponding items decrease as the distance from b grows.
From these observations we draw the following conclusions:

e The branching tree of a branch-and-bound algorithm should start with the break
solution and gradually enumerate the items from b outwards in a symmetric way.
This will generally ensure fast convergence towards an optimal solution.

mean weight

5001 .
i
t H
...’.
1001 . T
| e® e '\?guﬁ“;...&:o 2 o

100 b T
Figure 2.2: Mean weight of items j where the optimal solution z; differ from the break
solution z7.

36 CHAPTER 2. AN EXPANDING-CORE ALGORITHM FOR THE 0-1 KP

e [t seems that small-weighted items are used for achieving a sufficiently filled knap-
sack. Thus when choosing branching variables we should strive towards a filled
knapsack.

e The solution vector x should be represented as a list of variables differing from the
break solution, since this will save updating and space.

2.3 Basic structure of the algorithm

The p.t. most efficient algorithms for KP are those by Fayard and Plateau [24], and
Martello and Toth [52]. These algorithms are based on the fact that for large problem
sizes (n > 1000) it turns out that up to 90% of the computing time is spent for the sorting
(2.2). The mentioned algorithms avoid this problem by determining a small subset of the
items around the break item b called the core, by a modification of the Balas and Zemel [4]
method. The corresponding core problem is solved exactly, hoping that all remaining vari-
ables z; may be fixed at their optimal value by some later reduction algorithm. However
if some items outside the core cannot be fixed, a new problem containing all remaining
free items, must be solved. Such algorithms suffer from the following weaknesses:

e The size of the core is not known before the algorithm has terminated, and therefore
is impossible to predict. Several techniques for guessing the core size have been
applied, but none are exact.

e The reduction phase is performed at a fixed moment in the algorithm. Since the
lower bound is gradually improved by the branch-and-bound algorithm, better re-
ductions can be achieved at a later stage of the solution process. Thus the reduction
algorithm should be a dynamic part of the branch-and-bound algorithm.

e The enumeration performed by solving the core problem is only used to achieve a
good initial solution, so most of the enumeration has to be repeated, if optimality
of the core solution cannot be proved.

These problems can be avoided by letting the core be an interval [0, 7] around b which is
expanded by need. This idea leads to the following algorithm:

a) Find the break item b through a modification of the QUICKSORT algorithm: At each
partitioning, the interval not containing the break item b, is added to a list H or L
of partitioned intervals.

b) Find a heuristic solution by using a simple greedy algorithm.
c) Set the core to the interval [b, b].

d) Use a branch-and-bound algorithm with a symmetric branching tree for enumer-
ating items in the order b,b — 1,0+ 1,b— 2,.... Each time the branch-and-bound
algorithm grows outside the core, the nearest interval is taken from the list H or L.
The interval is reduced by using logical tests to fix some variables at their optimal

2.4. FINDING THE BREAK ITEM 37

value, and then partitioned by the same algorithm as in Step a) till some more
items have been sorted. The core is expanded with these items, and the branching
continues.

In Section 4 we will present the partitioning algorithm used to find the break item. Sec-
tion 5 will describe the branch-and-bound algorithm and Section 6 the core-expanding
algorithm. Finally Section 7 describes the chosen heuristic solution, and sketches the
main algorithm.

2.3.1 Roundoff errors

As noted in Pisinger and Walukiewicz [84], floating-point arithmetics in KP may lead to
roundoff errors, since a computer only works with approximations to the real numbers.
Especially when using truncating functions (like |z| in the Dantzig bound) it may yield
dramatic errors even for small deviations, and thus lead to incorrect results.

The problem may be avoided by rewriting expressions in the following way: Testing
whether the Dantzig bound is better than some lower bound z may be written:

Poos +] > 2 (2.8)
T
S Tt > 241 (2.9)
Wy
& det(z4+1—Dy_y, 7 pp,wp) < 0 (2.10)

where det (a1, as, b1, ba) = a1bs —asb,. Throughout this chapter we will rewrite expressions
as above to avoid floating-point arithmetics.

2.4 Finding the break item

It should be clear from the definitions in Section 2.1 that the break item b plays an
important role in the solution of KP: Knowing the break item, we may determine the
Dantzig upper bound, and we can construct the break solution, which is a quite good lower
bound. Moreover knowing these upper and lower bounds, we may reduce the problem
size by fixing some variables z; at their optimal value. Finally the break solution is a
good starting point for a branching tree.

The definition of the break item requires a complete sorting of the items according
o (2.2), but this sorting takes up most of the computing time for large problem sizes.
However Balas and Zemel [4] proposed a technique which allows us to determine the
break item in O(n) time. This technique is based on a definition of b which only demands
a partial sorting of the items, since we define the break item by the following three
properties:

Wp—1 < € < Wy, (211)
e > ey j=1,...,b—1, (2.12)
€ S Cp, j:b,,n (213)

38 CHAPTER 2. AN EXPANDING-CORE ALGORITHM FOR THE 0-1 KP

It is quite easy to modify a sorting algorithm like QUICKSORT (Hoare [32]) for only making
the above partial sorting of the items.

The QUICKSORT algorithm repeatedly chooses some middle value A from the interval
I = [f,1], and partition the interval in two parts [f,7 — 1] and [, [], so that

A\, jei] (2.15)
If it turns out that w; ; > ¢ then b must be in the interval [f,i — 1] according to (2.11),
while if W; ; < ¢ then b must be in the interval [i,[]. If at any stage, we denote ; 1 by
W, and wy_; by V, we get the following algorithm:

Algorithm 2.1
procedure partsort(f,1,V); {[f,1] interval, V =w;_4 }
if (I — f > 0) then

m = |(f +1)/2]; Swap items f,m,l so that e; > e,, > ¢.

fi;
if(l—f<3) then¢:=f; v:=1 v:=V, { return found interval }
else
D= P W= Wy, { A =p/w median of es, ey, € }
i=f; ji=0 W=V, { partition [f,[] in two intervals }
repeat
repeat W :=W +w;; i:=1i+ 1; until (det(p;, w;, p, w) < 0);
repeat J =7 — 1; until (det(p;, w;, p, @) > 0);

if (i < j) then swap(s, j); fi;
until (7 > j);
{Now ey, > X for k € [f,j] and e, < A, for k € [i,1] }
if (W > ¢) then L := LU{[3,l]}; partsort(f,i—1,V);
else H := HU/{|[f,i — 1]}; partsort(s,l, W); fi;
fi;

The procedure SWAP(i, j) swaps the items corresponding to the indices i and j.

As seen, the algorithm is a usual median-of-three variant of the QUICKSORT algorithm
with the modification that only intervals containing the break item are partitioned further.
The algorithm terminates when the current interval contains at most three items, and
clearly the break item will be one of these. The found interval is denoted by [¢, ¢], and
the weight sum up to ¢ is v = wWy_;.

Note that all discarded intervals are added to the lists H = {Hy,..., H,} (items of
higher efficiency) and L = {L4, ..., L;} (items of lower efficiency). When the PARTSORT
algorithm terminates these intervals looks like in Figure 2.3. Since each interval is the

& . H b L. L nY
Figure 2.3: The lists H and L.

2.5. THE BRANCH-AND-BOUND ALGORITHM 39

result of a partitioning by PARTSORT, the efficiency e; of any item in one interval I will
always be greater than or equal to the efficiency of any item in the interval to the right of
I. This knowledge will save some computational effort when we have to expand the core.

2.5 The branch-and-bound algorithm

We will now present a branch-and-bound algorithm EXPBRANCH, which satisfies the re-
quirements stated in Section 2.2. EXPBRANCH is a recursive procedure, which at each
recursion will insert (remove) one item to (from) the knapsack. At each recursion, s and
t, s < b <'t, indicates that the variables z;, j € [s+1,t—1] are fixed to some value, while
the remaining variables may be varied arbitrarily. Initially we set [s,t] = [b — 1, b].

At any stage P and W determine the profit and weight sum corresponding to the
current value of the solution vector z = {x1,...,2,}. Thus: P = Y1 pjzj, and W =
> i—1wjz;. Our initial vector is the break solution, and each succeeding iteration will try
to make W as close to ¢ as possible. Thus if W < ¢ we must insert some item j > ¢, and
if W > ¢ we must remove some item j < s from the knapsack. Having inserted (resp.
removed) some item j, we call EXPBRANCH recursively, but now with ¢ = j + 1 (resp.
s = j — 1), meaning that from now on we may only insert items after j (resp. remove
items before j). If s or ¢ grows outside of the core [0, 7], we sort some more items, and
expand [o, 7| correspondingly.

We backtrack if the upper bound does not exceed z, i.e. if

LP+(C_TVtV)th < 2z, when W <c, (2.16)
[P—i—mj < z, when W >¢, (2.17)

Ws

where the bounds on the left side are found by linear relaxation of z, and z;. The tests
are equivalent to

det(P—2z—1,W —c¢,pr,w) < 0, when W <e¢, (2.18)
det(P—2z—1,W —¢,p5,ws) < 0, when W > c. (2.19)

If no bound stops the branching, s may grow below 1, or t may grow beyond n. In such
case we must backtrack, since no more items can be inserted or removed. This is ensured
by expanding the data instance with two stop items 0 and n + 1 where (pg, wp) = (1,0)
and (pp41, Wp41) = (0,1). These limits ensure that when reaching s =0 or ¢ = n + 1 the
upper bounds will be so bad, that we are forced to backtrack.

Instead of keeping track of the current vector x, we only keep track of the items j
differing from the break solution z’, i.e. items where z; # x. Such items are added to
an exception list ' each time some improved solution has been found. Since the number
of such exceptions according to Section 2.2 usually is very small, this technique saves a
great amount of updating. When the algorithm terminates, we first set « to the break
solution 2’, and then we change the z;-values according to the exception list.

Now it should be straightforward to understand the following sketch of EXPBRANCH:

40 CHAPTER 2. AN EXPANDING-CORE ALGORITHM FOR THE 0-1 KP

Algorithm 2.2
function expbranch(P, W, s,t): boolean;
var improved: boolean;
improved := false;
if (W < c¢) then {insert some item j >t}
if (P > z) then { better solution found } improved := true; z := P; E := {; fi;
repeat
if (¢ > 7) then expand(L;); L := L\ {L;}; fi;
if (det(P —z — 1,W — ¢, p;, wy) < 0) then return improved; fi; { u.b. test }
if expbranch(P + p;, W + wy, s,t + 1) then improved := true; E := EU{t}; fi;
t:=t+1;
forever;
else { remove some item j < s}
repeat
if (s < o) then expand(H,); H := H \ {H,}; fi;
if (det(P —z — 1,W — ¢, ps,ws) < 0) then return improved; fi; { u.b. test}
if expbranch(P — ps;, W — ws, s — 1,t) then improved := true; F := FU {s}; fi;
s =s5—1;
forever;

fi;

Not all feasible solutions are generated by the branching tree, since we only consider
solutions close to a filled knapsack, but fortunately

Proposition 2.1 The branching tree of EXPBRANCH will reach an optimal solution.

Proof Assume, that an optimal solution is given by z*. Then we can write this solution
as exceptions from the break solution, yielding a set E* of the corresponding items. We
want to show that this set may be generated by EXPBRANCH.

Starting from the break solution, we insert or remove items from the knapsack accord-
ing to the following rule: If the weight sum W is less than ¢ we insert the item j € E*
with lowest index greater than or equal to b, and set E* = E* \ {j}. In the same way
we remove the item j € E* with largest index less than b, if W is greater than ¢, and set
E* = E*\{j}.

Since the solution z* is optimal, no bounding will stop this iteration. So the process
will only stop if one of the following three situations occurs:

E* =1, (2.20)
W>c AN VjeEE*#0:j>b, (2.21)
W<c AN VjeE"#0:5<b. (2.22)

Here (2.20) means that we have reached the optimal solution, while (2.21) means that z*
is not a solution, and (2.22) means that z* is not an optimal solution, since it may be
improved by setting x; = 1 for remaining j € E*. O

2.5. THE BRANCH-AND-BOUND ALGORITHM 41

(B, W)
(1)

(24,18)
(3,4)

t=4/ /E=EU{4}

true

(P,W) = (34 27)

(s,t) = (3,5)
s=2 s=1
w=25 —BU{2P =22
false true
(P, W) = (24, 19) (25,20)
(.6) = 2.5) "=
set z=25E=10
t=5 t=25

Figure 2.4: Branching tree for the presented example.

Example

We consider the following completely sorted problem with stop items added:

710 1 2 3 4 5 6 7
p; |1 5 9 10 10 2 1 0
w; |0 3 7 8 95 31

Where we have n =6, ¢ =20, b =4, and [o,7] = [0, 7].

In Figure 2.4, we show the corresponding branching tree, which is traversed top-down
in left-right direction. Each box corresponds to one procedure call, while each downgoing
arrow determines one iteration within the main loop of the procedure, and each upgoing
arrow illustrates the return from a sub-iteration. To improve understandability, upper
bounds u are determined by the original formulas (2.16) and (2.17). As initial lower
bound we choose z =p,_; = 24.

Upon termination we find the solution vector by first setting z; =1, j=1,...,3 and
z; =0, 7 =4,...,6, and then swapping the z; values according to the exception list

42 CHAPTER 2. AN EXPANDING-CORE ALGORITHM FOR THE 0-1 KP

E = {2,4}. The final solution vector is z = (101100), and the corresponding objective
value is z = 25.

2.6 Expanding the core by need

Each time the EXPBRANCH algorithm reaches the border of the core, we have to expand
the core. This is done by choosing an interval from the list H (resp. L) which is closest to
the break item, and using the PARTSORT algorithm to partition the interval. But before
doing this, we try to reduce the interval size by checking whether some variables x; can
be fixed at their optimal value.

2.6.1 Problem reduction by preprocessing

Ingargiola and Korsh [38] presented the first reduction algorithm for the Knapsack Prob-
lem, but many improved versions have been developed since then: For instance Dembo
and Hammer [14], Fayard and Plateau [24], and Martello and Toth [52].

All these reduction algorithms are based on the fact, that if an upper bound on KP
with additional constraint z; = o, @ € {0,1} is less than or equal to some lower bound
z, we may conclude that the branch z; = a never will lead to an improved solution, and
thus can fix z; at 1 — a.

More formally let u) (resp. wuj) be any upper bound on KP with the additional
constraint z; = 0 (resp. z; = 1), and let z be a lower bound on KP. Then the general
reduction scheme is:

2 = z;=1, (2.23)
z = x;=0.

W= NSO

u; <
u; <
The strength of such a reduction clearly depends on how tight the upper and lower bounds
are. As a lower bound we can use the best solution found so far by the branch-and-bound
algorithm, or initially just use some heuristic solution. As an upper bound we choose the
bound by Dembo and Hammer [14]:

_ T+ w;)p .

R I E B (2.24)
_ r—wj :

u; = Lpb—1+10j+(wb)pra]:b""’n’

where r = ¢ — Wy_1 is the residual capacity of the break solution. These bounds are not
the most tight, but they only demand that the break item b is defined by (2.11), and that
the items are ordered according to (2.12) and (2.13). Since the reduction is performed
dynamically throughout the solution process, we may expect that a better solution and
thus a better lower bound is found during the branching. This will usually more than
compensate for the quite weak upper bounds.

Using the bounds by Dembo and Hammer, we may rewrite the tests (2.23) as:

det(z +1—=Py_y +pj, 7 +w;,pp,wp) >0 = z; =1, j=1,...,b—1, (2.25)
det(z +1—py_y —pj, 7 —wj,pp,wp) >0 = z; =0, j=b,...,n,

2.6. EXPANDING THE CORE BY NEED 43

which yields the following sketch of the reduction algorithm:

Algorithm 2.3

procedure reduce(var i, j); {[i, 7] interval to be reduced }
if (j < b) then {1, 7] is left of [0, T] }
k:=o0-1;

while (i < j) do
if (det(z +1 —Dy_q + pj, 7 + wj, Py, wp) > 0) then { test item j }

swap(i,j); 4 :=1+1; {z; fixed to 1}
else
swap(j,k); ji=5—-1;, k:=k—-1; {z; free}
fi;
endwhile;
if (k =0 — 1) then swap(j, k); k:=k—1; fi; { return at least one item }
1:=k+1; j:=0-1;
else {[4, 7] is right of [0, T] }
k:=174+1;

while (i < j) do
if (det(z +1 —D,_y — i, 7 — W, Py, wp) > 0) then { test item i }

swap(i,j); j =7 —1; {z; fixed to 0}
else
swap(i, k); i:=i+1; k:=k+1,; {z; free}
fi;
endwhile;
if (k =7+ 1) then swap(i, k); k:= k+ 1; fi; { return at least one item }

1:=74+1; ji=k-—1;
ﬁ.

Y

The algorithm receives an interval [7, j| as argument, and terminates with [i, j] set to the
reduced interval of free items. The returned interval will always contain at least one item
even if the corresponding variable x; could be fixed by the criteria (2.25). This ensures
that the branch-and-bound algorithm always gets an item for deriving upper bounds,
which usually will save some computational effort: If the branch-and-bound algorithm
backtracks, no further sorting or reduction is needed. Note how the items are swapped to
ensure that the interval [i, j] of free items always is placed immediately beside the core
[0, 7].

The two while-loops are performed in linear time, which means that each reduction
of an interval [4, j] is performed in O(j — ¢ + 1). Since the reduction algorithm is applied
each time we expand the core, the computational complexity of all reductions corresponds
to the complexity of a complete sorting. And QUICKSORT has an average computational
complexity O(nlogn).

44 CHAPTER 2. AN EXPANDING-CORE ALGORITHM FOR THE 0-1 KP

2.6.2 Sorting

Having reduced the interval size, we must sort the corresponding items according to (2.2).
For this purpose we use the PARTSORT algorithm, since it repeatedly will partition the
intervals closest to b until at most three items have been sorted. The unsorted intervals
will be added to the lists H and L, and can be used next time the core needs to be
expanded.

This lead us to the following sketch of the core-expanding algorithm:

Algorithm 2.4

procedure expand(i, j); {[4, 7] interval from H or L}
reduce(i, j); { do the reduction }

if (j < b) then partsort(i, 7,0) else partsort(s, j, ¢); fi; { choose direction for sorting }
o := min(o, ¢); 7 := max(r, ¥); { adjust core limits}

2.7 Heuristic solution and main algorithm

ExXPKNAP needs some kind of heuristic solution to act as initial lower bound for the
branch-and-bound algorithm. Purists may use z = p,_;, but quite a lot of unnecessary
branching may be saved by choosing a better heuristic solution.

Since the items only are ordered according to (2.12) and (2.13), we use the following
heuristic solutions: The forward greedy solution, which is the best value of the objective
function when adding one item to the break solution:

zf = ,mbax {pb_l +pj @ Wpo1 +w; < C}, (2.26)
j=b,...n
and the backward greedy solution, which is the best value of the objective function when
adding the break item to the break solution and removing another item:
Z = max 1{]_9,, —p; @ Wy — w; < c}. (2.27)
j=1,...,b—
We choose the best of z; and 2, as our lower bound z, and store the corresponding solution
vector as exceptions E from the break solution.
The main algorithm may now be sketched in the following way:

Algorithm 2.5
function expknap(p, w, z,c,n): integer;

po :=1; wo:=0; H:={[0,0]}; { add stop items }
Pni1:=0; wpp1:=1; L:={n+1,n+1]};

partsort(1,n,0); [o, 7] := [0,]; { find initial core }

b:=¢; r:=c—v; { determine b}

while (w, <7) do 7 :=r —wy; b:= b+ 1; endwhile;

z = max(zs, z); Set E to the corresponding vector. { determine lower bound }
expbranch(p,_,, wy_1,b — 1, b); { branch-and-bound }
Define optimal solution x from E. { solution is defined }

return z;

2.8. COMPUTATIONAL EXPERIMENTS 45

Table I: Sorting times in seconds. Average of 50 instances.
n 50 100 200 500 1000 2000 5000 10000 20000 50000 100000
PARTSORT | 0.000 0.000 0.000 0.000 0.001 0.001 0.004 0.009 0.017 0.057 0.128
SORT 0.000 0.001 0.001 0.002 0.004 0.008 0.026 0.055 0.121 0.361 0.834

2.8 Computational experiments

The presented algorithm has been implemented in ANSI-C, and a complete listing is
available from the author on request. The following results have been achieved on a
HP9000/730 computer.

We will consider how the algorithm behaves for different problem sizes, test instances,
and data-ranges. Four types of randomly generated data instances are considered as
listed below. Each type will be tested with data-range R =100, 1000, 10000 for different
problem sizes n =50, 100, 200, 500, 1000, 2000, 5000, 10 000, 20 000, 50 000, 100 000. The
capacity c is chosen as ¢ = .

e uncorrelated data instances: p; and w; are randomly distributed in [1, R].

o weakly correlated data instances: w; randomly distributed in [1, R] and p; randomly
distributed in [w; — R/10,w; + R/10] such that p; > 1.

e strongly correlated data instances: w; randomly distributed in [1, R] and p; =
’qu + 10.

e subset-sum data instances: w; randomly distributed in [1, R| and p; = w;.

For each problem type, size and range, we construct and solve 50 different data instances.
The presented results are average values. If some data instance was not solved within one
hour the field is marked with a “—".

To get a deeper understanding of the algorithm, we measure the efficiency of each
part of the algorithm: Finding the break solution, reducing the data instance, branching
and bounding. Moreover we show how large the core grew, and give the average total

Table II: Use of reduction criteria as percentage of n. Average of 50 instances.

Uncorrelated Weakly correlated | Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
50 | 81 90 88 | 107 123 122 | 130 198 221 | 78 190 202
100 | 82 87 93 | 8 140 128 | 142 234 269 | 64 222 255
200 | 69 89 99 | 53 125 128 | — — — | 21 232 300
500 | 51 84 95| 19 123 121 | — — — 1 176 338
1000 | 29 88 97 | 20 112 120 | — — — 0 87 375
2000 | 11 91 100 9 100 113 | — — — 0 24 349
5000 1 91 97 1 30 110 | — — — 0 0 195
10000 0 74 101 0 10 110 | — — — 0 0 120
20000 0 56 102 0 6 106 | — — — 0 0 9
50000 0 13 97 0 3 922 | — — — 0 0 0
100000 0 4 96 0 3 12| — — — 0 0 0

46 CHAPTER 2. AN EXPANDING-CORE ALGORITHM FOR THE 0-1 KP

Table IIT: Number of iterations performed by EXPBRANCH in hundreds. Average of 50
instances.

Uncorrelated Weakly correlated Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
50 0 1 1 2 7 4| 1234 1423 8888 1 8 122
100 1 1 2 2 20 17 | 17780 476874 373863 0 8 115
200 1 2 3 1 34 57 — — — 0 7 118
500 1 6 14 1 102 188 — — — 0 4 87
1000 1 21 34 1 136 541 — — — 0 3 99
2000 0 58 94 0 135 1167 — — — 0 1 59
5000 0 110 336 0 56 4031 — — — 0 0 49
10000 0 107 1048 0 99 7071 — — — 0 0 23
20000 0 70 2026 0 146 6658 — — — 0 0 2
50000 0 15 4446 0 71 5853 — — — 0 0 0
100000 0 12 7234 0 3 3610 — — — 0 0 0

computing time for EXPKNAP. Finally the computing times are compared to those of the
MT2 algorithm which has been obtained from Martello and Toth [53].

First, Table I shows how much time is spent for finding the break solution by using
the PARTSORT algorithm compared to a complete sorting SORT. Since the sorting does
not depend on the problem type, we only show the average times for uncorrelated data
instances. As expected the computing time of PARTSORT grows linearly with the problem
size, and for large problem sizes PARTSORT is considerably faster than a complete sorting.

Next, Table II shows how often the reduction criteria (2.25) has been applied as a
percentage of all the items. Since the reduction criteria may be applied several times for
each item, this percentage may grow beyond 100 percent. It is seen, that small-sized data
instances generally apply the reduction criteria more often than large-sized data instances,
and that the use grows with the correlation and data-range. This may be explained by
the fact, that a solution close to the Dantzig bound is found easily for large-sized and
low-correlated data instances.

Table III shows the number of recursive procedure calls performed by EXPBRANCH.
It is seen, that large-ranged data instances generally use most iterations, and that the

Table IV: Final core size as percentage of n. Average of 50 instances.
Uncorrelated Weakly correlated Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
50 | 21.8 25.8 24.0 | 39.3 489 46.5 | 56.8 914 99.4 | 40.1 92.7 98.8
100 | 14.1 148 16.7 | 21.5 41.9 37.6 | 49.6 83.5 97.1| 25.5 86.6 100.0

200 | 8.5 9.5 11.2 | 10.0 25.7 26.6 — — — | 7.2 749 98.0
500 | 3.9 9.5 70| 39 172 16.1 — — — | 0.5 43.2 85.4
1000 | 2.1 4.1 4.6 | 2.7 10.7 12.3 — — — | 0.2 18.6 83.9
2000 | 0.8 3.4 3.2 1.0 7.3 7.7 — — — | 0.1 4.0 69.7
5000 | 0.2 2.0 20| 0.2 2.1 5.4 — — — | 0.1 0.1 34.1
10000 | 0.1 1.2 1.6 | 0.0 0.9 3.8 — — — | 0.0 0.0 18.8
20000 | 0.0 0.8 1.0 0.0 0.5 2.5 — — — | 0.0 0.0 1.2
50000 | 0.0 0.3 0.6 | 0.0 0.3 1.8 — — — | 0.0 0.0 0.0

100000 | 0.0 0.1 05| 0.0 0.1 0.6 — — — | 0.0 0.0 0.0

2.8. COMPUTATIONAL EXPERIMENTS 47

Table V: Total computing times in seconds (EXPKNAP). Average of 50 instances.

Uncorrelated Weakly correlated Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
50 | 0.00 0.00 0.00 | 0.00 0.00 0.00 | 0.17 0.19 1.25 | 0.00 0.00 0.02
100 | 0.00 0.00 0.00 | 0.00 0.00 0.00 | 35.67 66.17 30.74 | 0.00 0.00 0.02
200 | 0.00 0.00 0.00 | 0.00 0.01 0.01 — — — | 0.00 0.00 0.02
500 | 0.00 0.00 0.00 | 0.00 0.02 0.03 — — — | 0.00 0.00 0.02
1000 | 0.00 0.00 0.01 | 0.00 0.02 0.08 — — — | 0.00 0.00 0.02
2000 | 0.00 0.01 0.02 | 0.00 0.02 0.17 — — — | 0.00 0.00 0.02
5000 | 0.01 0.02 0.05 | 0.01 0.01 0.57 — — — | 0.01 0.00 0.03
10000 | 0.01 0.03 0.16 | 0.01 0.03 0.99 — — — 1 0.01 0.01 0.03
20000 | 0.02 0.04 0.31 | 0.02 0.04 0.96 — — — | 0.02 0.02 0.02
50000 | 0.07 0.09 0.72 | 0.06 0.09 0.93 — — — | 0.05 0.05 0.05
100000 | 0.16 0.19 1.28 | 0.16 0.19 0.71 — — — | 011 o0.11 0.11

Table VI: Total computing times in seconds (MT2). Average of 50 instances.

Uncorrelated Weakly correlated Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
50 | 0.00 0.00 0.00 | 0.00 0.00 0.00 | 0.04 0.02 0.08 | 0.00 0.00 0.01
100 | 0.00 0.00 0.00 | 0.00 0.00 0.00 | 10.59 5.21 21.15| 0.00 0.00 0.01
200 | 0.00 0.00 0.00 | 0.00 0.00 0.00 — — — | 0.00 0.00 0.02
500 | 0.00 0.00 0.00 | 0.00 0.01 0.01 — — — | 0.00 0.00 0.02
1000 | 0.00 0.00 0.01 | 0.00 0.01 0.02 — — — | 0.00 0.00 0.02
2000 | 0.00 0.01 0.01 | 0.01 0.01 0.04 — — — | 0.00 0.00 0.02
5000 | 0.01 0.02 0.04 | 0.01 0.02 0.09 — — — 1 0.00 0.01 0.02
10000 | 0.02 0.03 0.07 | 0.01 0.05 0.16 — — — 1 0.01 0.01 0.03
20000 | 0.04 0.05 0.12 | 0.03 0.08 0.23 — — — 1 0.02 0.02 0.04
50000 — 0.14 0.33 | 0.11 0.30 0.31 — — — | 0.06 0.06 0.08
100000 — 0.28 0.58 | 0.25 — 1.33 — — — 1012 0.13 0.15

number of iterations grows with the correlation (although subset-sum problems are quite
easy).

Table IV shows the final core size as a percentage of the problem size. The core size
is generally very small but seems to grow with the data-range. This explains why it is
almost impossible to give an a priori size of the core, like Martello and Toth [52] tried.

The average computing time for each data instance is given in Table V. It is seen,
that EXPBRANCH is able to solve most data instances with up to 100000 items, within
one second. Only the strongly correlated data instances cause problems, but this could
be expected due to the intrinsic hardness of these problems (Balas and Zemel [4]).

Finally Table VI gives the corresponding computing times using the MT2 algorithm.
The same instances have been tested on the same computer for both algorithms. It is
seen, that MT2 does not behave in a regular way: Some large sized instances were not
solved within hours (or even days) while the remaining instances were solved in seconds.
This behavior is a consequency of the a priori detection of the core: If a good lower bound
cannot be determined in the core problem, an overwhelming branching tree emerges.

The two algorithms are generally equally fast, but EXPKNAP has a very stable behavior,
with no anomalous instances. Thus we may conclude, that EXPKNAP dominates MT2. For

48 CHAPTER 2. AN EXPANDING-CORE ALGORITHM FOR THE 0-1 KP

a comparison of MT2 to other algorithms see Martello and Toth [53].

2.9 Conclusions

We have presented a complete algorithm for the exact solution of the 0-1 Knapsack Prob-
lem. The presented results show that EXPKNAP is one of the most efficient algorithms
available in the literature. The symmetric branching tree and the lazy sorting and reduc-
tion imply that most data instances are solved without sorting or even reducing most of
the items. And the expanding core avoids the anomalous behaviour of the “fixed-core”
algorithms. Moreover we have demonstrated that all calculations can be performed with
integers, thus avoiding the risk of deriving wrong solutions.

Since the algorithm is so simple to implement (only about 200 lines) it should be an
attractive alternative to algorithms like MT2 which has about 1400 lines. Small-sized
problem instances may be solved even easier, by sorting all items and only using the
EXPBRANCH algorithm. This algorithm would be extremely simple, and still yield a good
performance.

Chapter 3

Solving hard Knapsack Problems

Although several good algorithms have been developed for solving the binary
Knapsack Problem, none of these are able to solve strongly correlated data instances
with large coefficients. In this chapter we present an algorithm particularly well
suited for hard data instances, which combines the best ideas from recent research
in the area. The enumeration algorithm is based on decomposing the problem into n
parts, which successively are merged two by two. The merging is strictly local, but
tight upper and lower bounds are determined by taking advantage of the enumeration
in other sets, thus allowing us to fathom inferior states.

Computational experiments indicate an exceptionally good behavior for hard
data instances with large coefficients. So-called Todd-type data instances with more
than 50 items have been solved, although it was claimed that this would be unlikely
by current techniques. Moreover the so-called strongly correlated data instances
of large size are solved easily. The algorithm is highly parallel, and it is briefly
described how it may be implemented on parallel computers.

Keywords: Knapsack Problem; Dynamic programming; Reduction.

3.1 Introduction

Assume, that we have n items to pack in a knapsack of capacity c. Each item j has the
profit p; and the weight w;, and we wish to pack the knapsack in a way so that the profit
sum is maximized without having the weight sum to exceed c. More formally we define
the binary Knapsack Problem (KP) by

n
maximize z = ijxj
=1

n

subject to Y w;z; <, (3.1)
=1
z;€{0,1}, j=1,...,n,

where p;, w; and c are positive integers. Without loss of generality we will assume that
wj < ¢, j=1,...,n, to ensure that all items fit in the knapsack, and that >7_; w; > ¢
to ensure a nontrivial solution.

49

50 CHAPTER 3. SOLVING HARD KNAPSACK PROBLEMS

KP is N'P-hard [29], but many commonly occurring data instances may be solved
relatively easy. If we should classify the data instances according to their hardness, we
may use the observation by Balas and Zemel [4]: The difficulty of a data instance depends
on two aspects; the correlation of the items profit to weight ratio, and the gap I" between
the value of the linear programming optimum and that of the integer optimum. We get the
following classification, which has been confirmed by several computational experiments:

e Uncorrelated data instances: Coefficients p; and w; are not correlated, and conse-
quently such instances are easy, even when the coefficients are very large.

o Weakly correlated data instances: The ratio p;/w; has a small variation. In spite
of the high correlation, the gap I" is usually relatively small, so such instances are
quite easy to solve.

e Strongly correlated data instances: We have p; = w; + k, where k is a constant.
Frequently the gap I' will be of same magnitude as k, so hard instances may be
constructed.

e Subset-sum data instances: The ratio p;/wj; is constant. For small coefficients, these
problems are quite easy, since the gap I' is zero and several optimal solutions do
exist. Chvétal [11] showed, that for large coefficients, the gap I" will be nonzero,
thus forcing a complete enumeration.

Although good algorithms have been developed for solving easy data instances of the
Knapsack Problem, little attention have been paid to the solution of hard data instances.
Such instances occur when transforming general integer programming problems to the
Knapsack Problem, and are thus of great practical as well as theoretical interest.

Where uncorrelated data instances of size up to n = 100000 may be solved in less
than one second when the coefficients are sufficiently small (see for instance [4,52,75]), no
algorithms from the literature are able to solve strongly correlated data instances of size
larger than n = 100, when the coefficients grow. Todd [92] investigated a set of very hard
data instances for the Knapsack Problem, using coefficients which grow exponentially
with the problem size. According to Martello and Toth [50] we can not expect to solve
such problems of size larger than about n = 40.

This work is an attempt to improve results for hard Knapsack Problems. We present
a multiplicative dynamic programming algorithm, which unifies most of the leading ideas
from the literature. The algorithm is able to solve very large strongly correlated data
instances for limited coefficients, and to solve Todd-type problems (with exponentially
growing coefficients) of size larger than n = 50.

The organization of this chapter is as follows: In the following section we give a
brief description of major techniques for solving KP, while Section 3.3 sketches the new
HARDKNAP algorithm. In Section 3.4 we describe how the enumeration is done by mul-
tiplying sets, and Section 3.5 shows how tight lower bounds may be derived by looking
from each set of partial vectors into the other sets of partial vectors. Section 3.6 shows
how upper bounds may be derived by using a similar idea. In Section 3.7 it is described
how to keep track on the solution vector during the set multiplications, and Section 3.8

3.2. BACKGROUND 51

presents computational experiments. Finally Section 3.9 describes how the algorithm may
be implemented on parallel processors.

3.2 Background

Since Bellman [5] presented the first dynamic programming algorithm for solving KP,
this technique has played an important role in the solution of hard Knapsack Prob-
lems. Among the main results should be noted, that KP may be solved in pseudo-
polynomial time by dynamic programming (i.e. O(nc), where c is the largest coefficient
of the data instance). Several good implementations of dynamic programming algorithms
exist (Horowitz and Sahni [33], Toth [93]) but, as Toth remarks: The storage requirements
of dynamic programming procedures grows steeply with the size of ¢, so we should only
expect hard Knapsack Problems solved by this technique when ¢ has moderate value.
However Horowitz and Sahni [33] made the observation, that if the Knapsack Problem
is decomposed in two partial problems, the number of states in a dynamic programming
algorithm may be decreased by a square-root. The authors also concluded, that a further
partitioning is not suitable, since there is no simple way of combining the partitionings,
although Bellman and Dreyfus [6] a decade earlier used a complete decomposition in order
to solve KP by parallel computation.

By incorporating upper bounds in the dynamic programming it is possible to fathom
states not leading to an optimal solution. This idea was introduced by Morin and Marsten
[67] and has been successfully applied by several authors [33,93].

Ingargiola and Korsh [38] showed how to reduce the size of the data instance by prepro-
cessing. This idea is very fruitful for uncorrelated data instances, and several improved
versions of the idea have been presented subsequently. Unfortunately the technique is
quite useless for strongly correlated data instances since upper bounds are almost un-
changed by the fixing of a variable at a given value.

The latest result in this field was made by Martello and Toth [52], who showed how
enumerative upper bounds may be constructed as the maximum of some simple upper
bounds when walking through a branching-tree. This method was introduced with branch-
and-bound algorithms, but may equally well be used in dynamic programming.

In this chapter we will present a new algorithm named HARDKNAP which combines
all the above ideas. The algorithm is based on successive separation of the problem in
equally sized subsets of items, which then are merged two by two till all items have been
enumerated. Essentially it is the same algorithm as presented in Bellman and Dreyfus
[6], but the new idea is to apply the enumeration in other sets for obtaining tight upper
and lower bounds. These bounds get tighter at each iteration, for finally reaching each
other. In this way they are superior to all traditionally used bounds.

It should be pointed out, that the algorithm has some very interesting properties: Due
to the separability we obtain a worst-case running time of order O(2"/?), thus improving
by a square-root over traditional dynamic programming algorithms, and the storage con-
sumption is also decreased by a square-root. Moreover the algorithm may be viewed as
solving the problem through reduction, since at first iteration the fathoming step corre-
sponds to the reduction algorithm by Ingargiola and Korsh [38], but at each succeeding

52 CHAPTER 3. SOLVING HARD KNAPSACK PROBLEMS

iteration the reduction is improved.

3.3 Main algorithm

In the following we will assume that the items are ordered according to nonincreasing
efficiencies e; = p;/wj, thus

e; > e; when i <j. (3.2)

Although there may be several orderings satisfying (3.2), when some items have the same
efficiency, we will assume, that one particular ordering has been chosen.

For any two indices s,t, where 1 < s <t < n we define the set of partial vectors X,
by

Xoo = { (@e,..om) € {0, 1)1+] (3.3)

For a given partial vector x; € X,; we define the corresponding profit sum 7 by 7 (x;) =
m = ZE-:S p;Xij, and the weight sum p by pu(x;) = p = Zz-:s w;X;j. An optimal solution
to (3.1) may thus be found as

z = max {m(x;) : p(x;) <c}, (3.4)

xieXl,n

and in order to enumerate the set X;, we use the following technique:

Algorithm 3.1 Assume, that n is a power of two. Initially we construct n sets X;; each
consisting of two partial vectors

X = {(0), (1)}, i=1,...,n. (3.5)

Then we multiply the sets two by two, obtaining X9, X34,...,X,_1, as the cartesian
product of

Xi,i—l—l = Xz',z' X Xi—l—l,i—f—l; 7 =]_, 3, N 1. (36)

We continue this way till the final two sets X,/ and X, /241, are reached, which are
multiplied in a similar way.

Example 3.1 Given the data instance

j 11 2 3 4
p; |7 5 6 3
w; |4 5 7 4

where n =4 and ¢ = 13. Algorithm 3.1 runs like:

3.3. MAIN ALGORITHM

X1,

Xopo

!

X1

\/

\/

Further improvements

93

Xig |71 T2 T3 T4

0 0 0 O

2 |1 T 0 0 0 1
0 0 0 0 1 0

0 1 0 0 1 1

I 0 0 1 0 0

1 1 0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

4 (23 w2 1 0 0 1
0 0 1 0 1 0

0 1 1 0 1 1

1 0 1 1 0 0

1 1 1 1 0 1

1 1 1 0

1 1 1 1

If n is not a power of two, we use another technique in the initial step. Choose n' as
the largest power of two, less or equal to n. Then construct n’ sets X;; or X; 1, each
consisting of one or two items. Now we have obtained a power of two initial sets, and
may proceed as before.

By using Algorithm 3.1 we are able to enumerate the set of all vectors X ,, but
quite a lot of unneccessary enumeration may be avoided by using some simple criterias:
fathoming, reduction, dominance and improvement of the lower bound.

o Fathoming: If some partial vector x € X, has u(x) > c the vector is infeasible and
thus may be deleted from X ;.

e Reduction: Choose a partial vector x € X, ;. If an upper bound for (3.1) with the
additional constraint

zi = x; for i=s,...,1 (3.7)

is less or equal some lower bound z, then x may be deleted from X ;.

e Dominance: If two vectors x,y € X, fulfills 7(x) > m(y) and pu(x) < u(y) then y
may be deleted from X, since it will not lead to an improved solution (see [93] for

a proof).

o Improvement of lower bound: If x € X, has the property m(x) > z and u(x) < ¢
then set z = 7(x).

These properties will be considered in the following sections.

54 CHAPTER 3. SOLVING HARD KNAPSACK PROBLEMS

3.4 Multiplication of sets

It is convenient to represent each set X ; as an ordered list of the corresponding profit and
weight pairs (;, ;) called states. Although we loose information about the corresponding
physical vectors x it will later be described how the solution vector may be derived. The
set X5 = {X1,..., X} may thus be represented as a linear array {(m, p1), .. ., (Tm, tim) },
where 7m; < m11 and p; < fit1-

The multiplication X, = X,; x X{,,,, where X, and X;,,, has size m and m/
respectively, may be performed by setting (7, .., Wiy jm) = (Ti + 75, pi +) for @ =
L,...,m, j=1,...,m'. Then the set X[, is ordered according to nonincreasing weight
sums p, and dominated vectors are removed. Due to the ordering of u we only have to
ensure that 7 is growing, which may be done in linear time by Algorithm 3.2. The total

computational effort is thus O(mm'logy(mm’)) due to the sorting.

Algorithm 3.2
procedure removedom(X, var X');
{input: X = {(m1, p1),- -, (T, pm) }, output: X' = {(wf,)y, (s pir) } }
m' = L; (Wiaull) = (Wlaul);
for i := 2 to m do
if (m; > 7! ,) then
if (u; > pl,) then m' :=m' + 1; fi;
(Tt M) = (a5 p1a);
ﬁ.

Y
rof;

Example 3.2 Using the enumeration from Example 3.1, ordering the items according to
nonincreasing weight sums, and removing dominated states, we get the following scheme
(the dominated and thus deleted states are enclosed in brackets):

X1,1 T 1%
0 0 Xl,g s o’ X1,4 T U
7 4 \ 0 0 00
7 4 (3 4)
Xop | T p / (5 5) 7T 4
0 0 129 6 7
5 5 10 8
12 9
X33 | m p (9 11)
0 0 Xsa [7 p 13 11
6 7 \ 0 0 15 13
3 4 16 15
Xaa | T p / 6 7 1816
0 0 9 11 21 20

3 4

3.4. MULTIPLICATION OF SETS 35

Improved multiplication

Computational experiments show, that for most data instances up to 95% of the states
are removed by dominance. In such cases it would be time- and storage consuming, to
sort all mum’ partial vectors. Instead we should look for an algorithm which makes it
possible to remove dominated states during the enumeration, applying that X and X’
already are ordered.

The idea is to divide X recursively in two equally sized parts X, and Xp until the
hereby obtained sets have size 1. A set X4 of size 1 is trivially multiplied with the set X’
by simply adding the remaining state (7, 1) to each state in X', and the product set X
will still be ordered. Finally the sets X’} and X}, are merged two by two, by repeatedly
choosing the smallest weighted state from the sets, and removing dominated states as in
Algorithm 3.2. This leads to the following divide-and-conquer algorithm:

Algorithm 3.3
procedure split(X, X', var X");
{ determine X" = X x X' with dominated states removed }
if (m = 1) then
for i :=1 to m' do (#, ull) :== (w1 + 7}, w1 + 1f); rof; m" .= m/;
else

d:=|m/2]; Xa:={(m,m),...,(7a,pa)}; Xp:={(Tat1, tias1), - (Tms) }5
split(X 4, X', X%); split(Xp, X', X5); merge(X'], X}, X");

Y

fi

procedure merge(X, X', var X");
{ determine X" = X U X' with dominated states removed }
m" =1 (Tms1, Pmt1) 1= (00,00); (T y1,s Hawri1) 2= (00, 00);
if (< py) then (pf, 7f) == (u1,m); i:=2; j:=1;
else (1) == (i ml); i =1 j =2 fi
repeat
if (p; < p;) then
if (m; > 7l ,) then

if (u; > ply) then m" :=m" + 1; fi;
(s Mg} 2= (i)5

fi; 1:=0i+1;
else
if (71'; > 7T7,,;.LH) then

if (4 > pyn) then m" .= m" +1; fi;
(7%"’ :ulrln”) = (7?;'; ,u;-);
fi, j:=7+1,
end;
until (i =m+1) and (j =m + 1);

If we choose X as the smallest of the two sets there will be mm' additions in procedure
m

spLIT, followed by m mergings of length m' in procedure MERGE, % mergings of length

56 CHAPTER 3. SOLVING HARD KNAPSACK PROBLEMS

at most 2m’, and so on. Assuming that m is a power of two we may sum the number of
operations to mm/+mm/+52m/+74m/+-.. 4+ "mm’ getting the complexity O(mm'logm).

Finally we notice that the last multiplication in Algorithm 3.1 is not necessary ac-
cording to [1,33], since the two sets X , /o and X, /511, are ordered, making it possible to
derive maximal pairs (1, it5), tts € Xinj2, tj € Xnjo41,n satisfying p; + p; < c in linear
time by running forward through X,/ while we run backward through X5, ,. This
gives Algorithm 3.1 the complexity O(27/2).

3.5 Lower bounds

While the preceding multiplication of states was strictly local, we will now apply global
knowledge about the enumeration in other sets to obtain tight lower and upper bounds.

A lower bound for (3.1) may be found by using the greedy algorithm: include the
items 1,2, ... until the first item b which does not fit into the residual capacity. This item
is called the break item, and the profit sum

b—1
z = Zpi, (3.8)
i=1

is obviously a lower bound for (3.1). The break item b may also be defined as the index
which satisfies
Wy, < ¢ < Wy, (3.9)

where the cumulated weights w; are given by w; = ;_:11 wy, fori=1,...,n.

Greedy solution for sets

We will now generalize the greedy algorithm for sets of states. For each set X; = X, the
corresponding set profit is given by P, = Z;-:s pj, and the set weight is W; = Zz-:s w.
With the sets labeled X, ..., X4, the cumulated set profits P; and weights W; are given
by

S
|
—

iR

i=1,...,d+1, (3.10)

S .
[
o=

W, = W;

IR
1

i=1,...,d+1, (3.11)

<.
Il

and we define the break set Xz by the index B which satisfies
Wp <c<Wpgi. (3.12)

The break state (mg, pg) within the break set Xp = {(m1,p1),- .., (7m, m)} may be
defined by the index [which satisfies

ps < c—Wg < gy (3.13)

3.5. LOWER BOUNDS 57

The inequality ¢ — W g < pgs1 is dropped when 3 = m, and we set 3 = 0if y; > c—Wp.
By definition we have W + ug < ¢ for 8 # 0 so a lower bound for (3.1) is given by

VA PB+7Tﬂ. (314)

Notice, that at the initial step of merging when Xp = Xj; this bound corresponds to the
greedy solution (3.8), but for each future merging it becomes tighter, for finally becoming
the optimal solution when Xp = X ,,.

Example 3.3 We consider the sets of partial vectors from the initial stage of Example
3.2:

X1 XQ X3 X4

~ o3
B Oolx
ool
ol O
o O
EN el s
w ol
B Ol

The cumulated profit sums, and weight sums are

j |1 2 3 4 5
P; |0 7 12 18 21
W; |0 4 9 16 20

N

so the break set is X3 and the break state within this set is (my, 1) = (0,0). We get the
lower bound z = P33+ m =124+ 0 = 12.

Greedy solution for a restricted problem

The bound (3.14) may equally well be derived with some variables fixed by a partial vector
x; € X, as given by (3.7). Such a lower bound will be denoted by z(7,j), and a lower
bound for the Knapsack Problem (3.1) alone may be determined as maximum z(3, j) for
all sets X; and all partial vectors x; € X;. We get

¢ = max max 2(%, 7). (3.15)

Thus, assume that some variables are fixed by a partial vector x; € X, as given by (3.7).
If W+ u(x;) > c the break set Xp should be found among X7, ..., X;_1, and it is defined
by the inequality

Weg<c— ,LL(XZ) < WB—H- (316)

The residual capacity is then
r = c— u(x;) — Wa, (3.17)
meaning that the break state (mg, ug) € Xp is defined by

pp <7 < pgit, (3.18)

o8 CHAPTER 3. SOLVING HARD KNAPSACK PROBLEMS

with usual assumptions for § = 0 and 3 = m. Conversely if W; + u(x;) < ¢ we know that
the break set should be found among X;,,..., Xq, and it is defined by the inequality

WB - Wj <c-— H(Xi) < WB+1 — VVJ', (319)

where the set weight of X, is subtracted from the cumulated set weight to avoid double
addition. The residual capacity is then

r = c—p(x;) —Wp+ W, (3.20)

and the break state [is defined by (3.18). We get the following algorithm for deriving
the lower bound:

Algorithm 3.4
z:=0;
for all sets X; = {(m1, 1), -, (Tm, ftm) } do
for all states (m;, i1;) € X; do
if (u; > ¢) then state (m;, y;) is infeasible, and may be fathomed. fi;
if (W] + p; < ¢) then
find through binary search in {X;;4,..., X4} an
index B which satisfies W < ¢ — u; + W; < W i1
ri=c—p—Wp+Wj; p:=m+Pp—Pj;
else
find through binary search in {X3,...,X; 1} an
index B which satisfies Wp < ¢ — p; < Wp,1.
rie=c—pi—Wg; p:=m+ Pg;
fi;
find through binary search in Xz a state § satisfying pg < r < pgy1.
if (6#0) and (p+ 7 > 2) then z :=p + 7g; fi;
rof;

Y
rof;

Example 3.4 For each state (7, ;) € X; from Example 3.3 the following table gives the
corresponding break set Xp, the break state (7, ug) within the break set, and the lower
bound z(i, 7).

i J|lm op | B B z2(i])
1 110 04 1 11
2 1|7 413 1 12
1 210 04 1 13
2 215 5|13 1 12
1 3]0 0] 5 1 15
2 3|16 7|2 1 13
1 4/ 0 0|3 1 12
2 413 4] 3 1 15

It is seen, that by this technique, we obtain a lower bound z = 15, which is considerably
better than the lower bound found in Example 3.3.

3.6. REDUCTION 99

3.6 Reduction

The purpose of the reduction is to delete partial vectors whose upper bound does not
exceed the so far best lower bound. For a given partial vector x; € X; = X,; we may
construct a complete vector y = (y1,...,¥n) by setting

1 for h=1,...,s—1,
YL = x;n for h=s,...,t, (3.21)
0 for h=t+1,...,n.

By linear relaxation of the variables x; ; and z;,; we obtain the following upper bound
for the vector y

mly) + o8NPy) <,

uly) = (3.22)

mly) + o BINPt) g gy s,

where we set (pg, wy) = (00, 1) and (pyy1,wny1) = (0,00). The vector y will have profit
sum 7(y) = P; +7(x;) and weight sum pu(y) = W; + u(x;), so an upper bound for y and
thus x; may be found as

LP]’ + 7T(XZ') + (C — Wj — M(Xi))pH—IJ if Wj + /,L(Xz) < C,

u(x;) = (3.23)

| P; + (%) + (c= W, ,L_US'L_LEXi))pS_IJ if W;+ u(x;) > c

This bound could be used for reducing infeasible partial vectors in an enumeration al-
gorithm as done in Pisinger [65], but we may derive tighter upper bounds by taking
advantage of the enumeration in other sets as described below.

The mbound

Martello and Toth [52] showed, that having a complete enumeration of partial vectors X 4,
an upper bound for the Knapsack Problem (3.1) may be found as the maximum over X,
of each partial vector’s upper bound. Using the bound (3.23) we get the following upper
bound

msp-bound = max u(x;). (3.24)
X;€Xst

It is seen that for [s,t] = [b,b] the m-bound becomes the Martello-Toth upper bound

[46], and by expanding the interval [s,] we can make the m-bound arbitrarily tight. The

ultimate bound is reached for [s,t] = [1, n|, where it corresponds to the optimal solution
for KP.

Any set X, ; may be used for deriving the m-bound, but the tightest bound is obtained

by using the break set Xp as given by (3.12). Applying the m-bound in its direct form

would however mean, that we had to run through all vectors in Xz each time the bound

60 CHAPTER 3. SOLVING HARD KNAPSACK PROBLEMS

was used. This may be avoided by applying the following method by Pisinger [65]. First
we define the functions ¢ and v by:

o(x;)) = & = 71',"%%, (3.25)

where we set ¢y = 0 and 19y = 0. Then the bound u(x;) for x; € Xp becomes

N5 WBpt—H P 774
Pp — ——7 + o(x; f Wp+uxi) <c
wx) = 1Ps — =, (x;)] if Wp+px)<c 327

[Py — VBl L y(x)] i W+ plx:) > c,

and since the states {(71, i41), - - -, (T,)} in Xp are ordered we have W + p; < c for
i < B and Wpg+ u; > cfori > 3, where 3 is the break state corresponding to the set Xp
as given by (3.13). By inserting equation (3.27) in equation (3.24) we get the following
equality

- W
[Py — =5 + maxics $(xs)
m-bound = max (3.28)

- Wpeps
|Pp — =B 4 maxis 5 ¢0(xy))

If we define max ¢; and max1); as

max¢; = max¢;, j=0,...,m, (3.29)
1xJ

maij = m>aX¢Za .7 = 0: T (330)
i>j

we obtain that the 7-bound may be derived as the maximum of the following two expres-
sions

5 W
[Pp — =525 + max gy,
msp-bound = max (3.31)

- Wgeps
|Pp — —5P2=L + maxjs).

Since all variables max ¢; and max1); can be determined in linear time per global reduc-
tion, the m-bound may be determined in constant time once B and (has been found.

This will be crucial when we use the m-bound for reducing partial vectors.

Example 3.5 Extending the data instance from Example 3.1 we get the following table:

j 10 123 4 5|
pj |loo 7 5 6 3 0
wi |1 45 7 4

3.6. REDUCTION 61

Using the enumeration from Example 3.2 we wish to find an upper bound for (3.1) using
the equation (3.31). As found in Example 3.3 we have the break set Xp = X3 and the
break state in X3 is given by 8 = 1. We get the following table for X, ; = X3 3:

T bi Y; | max¢; max1);
— — | 0.00 0.00 0.00 13.00
0 0] 975 13.00 9.75 12.00
6 7] 10.50 12.00 10.50 0.00

N = O .

The upper bound is found as

m33-bound = max { | P3 — W%? + max ¢y |, | P3 — W%f? + max ¢1J}
= max{15,15} = 15.

The m-bound for a restricted problem

In order to delete infeasible partial vectors x; € X; = X, , we will determine the 7m-bound
for (3.1) restricted by

T, = Xy for i=wu,...,v, (3.32)

and delete the vector if the upper bound does not exceed the lower bound z. So let Xp
be the break set corresponding to the partial vector x; as given by (3.16) or (3.19). Then
the m-bound for the vector x; is

m-bound|x, = max w(Xi) x5 (3.33)

where the bound u(x;) restricted by (3.32) is derived the following way: The addition of
constraint (3.32) means that a complete vector y for x; becomes

1 for h=1,...,s—1, h & [u,v],
_ X, for h=s,...,t,
Yh = 0 for h=t+1,...,n, h & [u,v], (3.34)
Xgn for h=wu,... v

The vector y will have profit sum 7(y) = P; + 7(x;) + pr and weight sum pu(y) =
W + u(x;) + Wy, where the deviation by fixing some variables by constraint (3.32) is
given by

—— 7(Xg) if v<s,
Pe = { m(xg) — P if u>t, (3.35)
— w(xx) if v<s,
Wk = { p(xg) —W; if uw>t. (3.36)

62 CHAPTER 3. SOLVING HARD KNAPSACK PROBLEMS

Now the upper bound (3.27) becomes

L(FB +ﬁk) - (WB * wk) Pei1 + ¢(XZ)J if WB + ?I)k + ,U,(XZ) S C,

u(xi)x, = _ (3.37)
|(Ps + pr) — W :l_):ijlf) Pomt P(x;)| if Wg+ o+ u(x;) > c,

and the restricted m-bound (3.31) becomes

W + W) pria

L(ﬁB =+ ﬁk) - (Wit1 + max QﬁgJ,
m-bound|x, = max 7 i (3.38)
|(Ps + pr) — (Vg zﬁf)psfl + max],

where 3 is the break state as found in Algorithm 3.4. We get the following reduction
algorithm:

Algorithm 3.5
for all sets X; do
for all states (m;, i) € X; = {(m1, 1), -, (Tm, i) } do
{ Use the break set B and break state (3 as found by Algorithm 3.4}
if (j < B) then p:=m; — Pj; 0 := p; — Wj;
else p := m;; W := p; fi; { Deviation (3.35) and (3.36) }
{ Now determine the upper bound }
W + W) pria

uy ;= |(Pp+p) — (_ Wi + max ¢g];
uy == [(Pg+p) — W qu_ul) Ps=1 4 max Va;

{ Check if state may be deleted }
if (max{uy,us} < 2z) then drop state fi;
rof;

Y
rof;

Example 3.6 An upper bound for the state (mo, u2) = (3,4) € X, from Example 3.3 is
found as follows: The break set is given by B = 3 (see Example 3.5), and we find p = 3
and @ = 4. Then the bound is

L(Ps +5) - w +max ¢,

[Py +7) — Wt 0IP2 ey

= max{15,14} = 15.

m33-bound = max{

3.7 Solution vector

Our algorithm is able to find the optimal value of the objective function in (3.1), but not
to find the corresponding solution vector x. In order to find x, we will extend a state
with two pointers o and 7, so it becomes (7, u, o, 7).

3.8. COMPUTATIONAL EXPERIMENTS 63

At the initial step when sets X;; are constructed, we set o to point at item ¢ if z; = 1,
and to nil otherwise. The pointer 7 is set to nil in any case. When multiplying two sets
by adding states two by two (Algorithm 3.3) we set o and 7 in the product state to point
at each of the added states. By this technique it is easy to find the vector x corresponding
to a given state (, u, o, 7). First all variables x; are set to 0, and then we follow the states
downwards to states where 7 is nil. If ¢ is not nil we set the corresponding variable z;
to 1.

As noted in Section 3.3 initial sets X; ;1 containing two items may occur, when n is
not a power of two. Such sets are treated as the product of two sets X;; and X;;;1, and
may thus be initialized as described above.

3.8 Computational experiments

The presented HARDKNAP algorithm has been implemented in ANSI-C, and a complete
listing is available from the author on request. The following results have been achieved
on a HP9000/730 computer.

We will consider how the algorithm behaves for different problem sizes, test instances,
and data-ranges. Four types of randomly generated data instances are considered. Each
type will be tested with data-range R =100, 1000, 10000 for different problem sizes

n =100, 200, 500, and 1000. The capacity c is chosen as ¢ = % i Wy

e uncorrelated data instance: p; and w; are randomly distributed in [1, R].

o weakly correlated data instance: w; randomly distributed in [1, R| and p; randomly
distributed in [w; — 10, w; + 10] N [1, R + 10] (the set intersection ensures that p; is
positive).

e strongly correlated data instance: w; randomly distributed in [1, R] and p; = w;+10.

e subset-sum data instance: w; randomly distributed in [1, R] and p; = w;.

For each problem type, size and range, we construct and solve 10 different data instances.

Table I shows the average computational time for each of the different types of data
instances, while Table II shows the average gap I’ between the value of the linear pro-
gramming optimum and that of the integer optimum. As expected from the introduction
the computational time is seen to depend strongly on the correlation and gap I'. The
strongly correlated data instances which have both of the properties are clearly the hard-
est problems to solve. Anyhow the presented algorithm is able to solve them in reasonable
time, a result which hitherto has not been presented in the literature. For comparison
it should be noted that Toth [93] using dynamic programming only was able to solve
strongly correlated data instances of size n = 200 and R = 100. Of the total computa-
tional time used by HARDKNAP more than 99% of the effort was used for multiplying the
sets by Algorithm 3.3 when the problem was hard. This means that improvements in the
multiplication part would make the algorithm substantially faster.

Table III shows the maximum size of the sets of states. It is seen that the size grows
with the hardness of a data instance but still stay within the limits of a modern computer.

CHAPTER 3. SOLVING HARD KNAPSACK PROBLEMS

Table I: Total computational time in seconds. Average of 10 instances.
n

type R 100 200 500 1000

100 | 0.01 0.02 0.05 0.12

uncorrelated 1000 | 0.01 0.03 0.06 0.16

10000 | 0.01 0.02 0.07 0.17

100 | 0.01 0.02 0.05 0.09

weakly corr. 1000 | 0.02 0.03 0.07 0.14

10000 | 0.12 0.16 0.21 0.23

100 | 0.03 0.07 0.21 0.35

strongly corr. 1000 | 0.25 2.33 6.32 12.89

10000 | 1.74 35.47 435.71 1013.49

100 | 0.01 0.01 0.03 0.07

subset sum 1000 | 0.02 0.02 0.04 0.08

10000 | 0.03 0.06 0.11 0.11

Table II: Gap I" between LP-optimum and IP-optimum. Average of 10 instances.
n

type R 100 200 500 1000

100 3.5 1.5 1.3 0.5

uncorrelated 1000 | 47.0 23.7 14.5 9.5

10000 | 506.9 248.0 133.6 87.2

100 1.1 0.2 0.0 0.0

weakly corr. 1000 2.0 0.9 0.3 0.0

10000 3.8 1.8 0.5 0.0

100 4.7 4.4 51 4.1

strongly corr. 1000 4.7 4.9 4.9 4.8

10000 5.3 5.1 5.1 3.4

100 0.0 0.0 0.0 0.0

subset sum 1000 0.0 0.0 0.0 0.0

10000 0.0 0.0 0.0 0.0

3.8. COMPUTATIONAL EXPERIMENTS 65

Table III: Maximum size of sets X;. Maximum over 10 instances.

n
type R 100 200 500 1000
100 15 17 58 98

uncorrelated 1000 58 64 184 456
10000 45 50 89 513

100 52 107 16 12

weakly corr. 1000 609 502 782 769
10000 | 8070 6356 16455 2728

100 894 929 2170 2672

strongly corr. 1000 | 7404 14369 18148 22819
10000 | 53700 90332 148971 261676

100 4 4 4 4
subset sum 1000 128 128 16 16
10000 128 128 256 16

Table IV: Todd-type data instances. Problem size n, computational time in seconds, gap
I', and maximum size of set of states.

n | time I max size
5 0.0 60 4
10 0.0 248 32
15 0.0 4 088 128
20 0.0 16 368 1024
25 0.1 262 128 4 097
30 0.3 524 272 32 768

35 1.7 16 777 184 131 072
40| 134 33 554 400 1 048 576
45| 48.9 536 870 880 2 097 152
50 | 771.1 1073 741 792 2 (097 152

66 CHAPTER 3. SOLVING HARD KNAPSACK PROBLEMS

Finally we tried to solve Todd-type data instances [92] by the given algorithm. The
coefficients are generated as follows: Set k& = |log, n| and

pj = w; = 2K Lok L =1, n. (3.39)

Todd showed, that no states in a dynamic programming algorithm may be reduced due to
an upper-bound test, and no two states dominates each other. So we have to enumerate
all 2"/2 states in order to solve the problem. Martello and Toth [50] claimed that we can
not expect to solve such problems of size larger than about n = 40.

Due to the exponentially growing coefficients the algorithm had to be slightly modified
in order to represent the large numbers and to store the states, but basically the main
technique was unchanged. Table IV shows, that it was possible to solve problems of size
n = 50 in reasonable time, thus breaking through the limit by Martello and Toth. In the
table is given the average computational time, gap I and maximum size of a set of states.

Since the Todd-type data instances are ultimately hard, we can use these tests for
obtaining a worst-case guarantee: Any Knapsack Problem of size up to n = 50 may be
solved by the presented algorithm. This is however a very pessimistic bound, as most
instances encountered in practice are solved in seconds, even for n = 1000.

3.9 Parallel implementation

In the following we will sketch a parallel implementation of the HARDKNAP algorithm.

1 The sorting according to nonincreasing efficiencies (3.2) may be done in O(log®n)
time on a hypercube with n processors, but the sorting will generally take only a
minority of the computational effort for hard Knapsack Problems, so it is doubtly
worth the effort to parallelize this part.

2 Algorithm 3.1 may be handled in parallel by letting each processor make one set
multiplication by Algorithm 3.3. Using n processors we reach the optimal solution
in log, n multiplications.

If the number of processors m is smaller than n, each processor must take care
of several multiplications. To obtain a balanced load we assign multiplication 7,
1 <4 < n to processor ¢ modulo m, since sets around the break set Xp given by
(3.12) usually grow larger than sets close to the borders.

3 The reduction phase is harder to parallelize, since it demands some global informa-
tion, which might not be available at each processor. We will therefore assume that
the set weights W; are homogeneous, implying that all break sets given by (3.16)
and (3.19) will be close to the set containing the break item b. This is for instance
the case when the weights are randomly distributed. In this case it is sufficient to
only apply the break set Xp containing the break item b and one neighboring set
Xp closest to b for this reduction. If a reduction occasionally should demand access
to another set, we simply choose the closest of the sets Xp and Xpg/: The upper
bound (3.38) is valid independently on the chosen break set Xp.

3.10. CONCLUSION 67

Now the reduction phase may be parallelized by broadcasting the two sets Xp and
Xp to all processors, so that the lower bound in Algorithm 3.4 may be evaluated
in parallel.

4 When all processors have found their lower bound z, the best bound is chosen and
distributed to all processors.

5 The determination of max¢ and max1t) as given by (3.29) is done locally since
transmission of the values would take more time than a local evaluation. Finally
the reduction Algorithm 3.5 is evaluated in parallel.

6 If optimality cannot be proved, the reduced sets are again divided among the pro-
cessors, and we go back to step 2.

A further improvement, which is well suited for Todd-type data instances, is to do the
multiplication by Algorithm 3.3 in parallel. If the smallest of the two multiplied sets
has size m, we may use m/2 processors for merging the sets in totally log, m mergings.
Binary tree-connected processors seems to be specially well suited for this purpose. If m
is large, we may assign several mergings to each processor as sketched in step 2 above.
This should not cause any balancing problems, since the necessary work in each merging
will be of same magnitude.

The parallel implementation is interesting, since compared to the traditional paral-
lelization (Kindervater and Lenstra [41]) we have incorporated bounding procedures to
fathom inferior nodes, thus making the algorithm practicable for several types of data in-
stances. Compared to parallel branch-and-bound algorithms, we obtain a more balanced
search tree, and we apply dominance relations to fathom even more nodes.

3.10 Conclusion

It has been demonstrated how the simple enumeration algorithm by Bellman and Dreyfus
[6] may be extended to derive tight upper and lower bounds, thus making it possible to
fathom several inferior states. The hereby obtained HARDKNAP algorithm has proved to be
superior for solving hard Knapsack Problems, especially the so-called strongly correlated
data instances.

Due to the time bound O(2"/?) we have been able to solve Todd-type problems of
size n = 50, meaning that any problems up to this size may be solved by the current
algorithm. The computational experiments however indicate that all commonly occurring
data instances may be solved considerably faster than the worst-case complexity.

Finally we have sketched a parallel implementation of the algorithm, possibly allowing
us to solve even harder problems.

68

CHAPTER 3. SOLVING HARD KNAPSACK PROBLEMS

Chapter 4

A Minimal Algorithm for the 0-1
Knapsack Problem

It is well known that several types of large sized 0-1 Knapsack Problems (KP)
may be easily solved, but in such cases most of the computational effort is used for
preprocessing, i.e. sorting and reduction. In order to avoid this problem it has been
proposed to solve the so-called core of the problem: A Knapsack Problem defined
on a small subset of the variables. But the exact core cannot be identified without
solving KP, so till now approximated core sizes had to be used.

In this chapter we present an algorithm for KP which has the property that
the enumerated core size is minimal, and that the computational effort for sorting
and reduction also is limited according to a hierarchy. The algorithm is based on a
dynamic programming approach, where the core size is extended by need, and the
sorting and reduction is performed in a similar “lazy” way. As a consequence we are
able to prove that the final core is the smallest symmetrical core which is solvable
by enumerative core algorithms.

Computational experiments are presented for several commonly occurring types
of data instances. Experience from these tests indicate that the presented approach
outperforms any known algorithm for KP and that it has a very stable behavior.
Keywords: Knapsack Problem; Dynamic Programming, Reduction.

Introduction

We will consider the 0-1 Knapsack Problem (KP), where n items have to be packed in a
knapsack of capacity c. Each item j has an associated profit p; and weight w;, and we
wish to maximize the profit sum of the included items without having the weight sum to
exceed c.

Many industrial problems can be formulated as Knapsack Problems: Cargo loading,
cutting stock, project selection, and budget control to mention a few examples. Many
combinatorial problems can be reduced to KP, and the problem arises also as a subproblem
in several algorithms of integer linear programming. KP is NP-hard, but it can be solved
in pseudo-polynomial time through dynamic programming [53].

In the middle of the 1970ies several good algorithms for KP were developed by

69

70 CHAPTER 4. A MINIMAL ALGORITHM FOR THE 0-1 KP

Horowitz and Sahni [33]|, Nauss [59], and Martello and Toth [46]. The starting point
of each of these algorithms was to order the variables according to nonincreasing profit-
to-weight (p;/w;) ratio, which was the basis for solving the Linear KP. From this solution
appropriate upper and lower bounds were derived, making it possible to apply some log-
ical tests to fix several variables at their optimal value. Finally the KP in the remaining
variables was solved by branch-and-bound techniques.

However computational experience showed that the preprocessing (i.e. sorting and
problem reduction) usually constituted the lion’s share of the computational effort re-
quired to solve KP. Balas and Zemel [4] avoided this problem by focusing on a small
subset of the items — the so-called core — where there was a large probability for finding
an optimal solution. The exact core consists of those variables whose profit-to-weight
ratio falls between the maximum and minimum p;/w; ratio for which z; in an optimal
solution to KP has a different value from that in an optimal solution to the Linear KP.
Since the determination of the exact core would require the solving of KP, Balas and
Zemel [4] proposed to use an approximate core, which could be found through a parti-
tioning technique of complexity O(n). A complete sorting of the variables would require
O(nlogn). Martello and Toth [52] modified the partitioning algorithm to satisfy some
given requirements on the core size. But still the expected core size was a pure guess.
Although the exact core cannot be determined before KP is solved, Pisinger [75] observed
that the core can be determined while KP is solved, by simply adding new items to the
core by need. However Pisinger used a depth-first branch-and-bound algorithm for the
solution of KP, which had the disadvantage that an unpromising branch sometimes was
followed to completion — thus forcing a further extension of the core, although an optimal
solution could be found within the current core.

In this chapter we avoid that disadvantage by using a breadth-first dynamic program-
ming algorithm for the enumeration, as the core gradually is extended. When the process
terminates due to some bounding tests, we are able to prove that the enumerated core
actually is the smallest possible symmetrical core, which is enumeratively solvable. The
presented algorithm differs from previous work in the following respect: A new recursion
is presented for the dynamic programming which fully takes advantage of the fact, that
optimal solutions are found around the fractional variable of an LP-solution. Stronger
upper bounds are applied for reducing items not in the core, and a new improved O(n)
algorithm is used for deriving the initial core. The complete algorithm has pseudopolyno-
mial time bound O(nc), which implies that even very large strongly correlated instances
may be solved in reasonable time.

The chapter is organized as follows: First, Section 4.1 brings some basic definitions
and a sketch of the main algorithm, while Section 4.2 shows how an initial core may
be derived through partial sorting. Next, Section 4.3 gives a description of the dynamic
programming algorithm and describes how the core is expanded by need. The following
two sections show how we use some logical tests to fix several variables at their optimal
value, and Section 4.6 shows how the optimal solution vector is determined by backward
reaching for the initial state. Finally Section 4.7 proves the minimality of the obtained
core, and we end this paper by bringing some computational experience in Section 4.8.

A first version of this chapter was presented at the NOAS’93 Conference [66]. Similar

4.1. DEFINITIONS AND MAIN ALGORITHM 71

results as presented in this chapter have recently been obtained for the Multiple-choice
Knapsack Problem and the Bounded Knapsack Problem [81,78].

4.1 Definitions and main algorithm

The 0-1 Knapsack Problem may be defined as the following maximization problem
n
maximize 2z = ijxj
j=1

subject to Y w;z; <c (4.1)

j=1
z; €{0,1}, j=1,...,n,

where all coefficients are positive integers. Without loss of generality we may assume that
wj < cfor j =1,...,n so each item fits into the knapsack, and that 37, w; > ¢ to
ensure a nontrivial problem. If we relax the integrality constraint z; € {0,1} in (4.1) to
the linear constraint 0 < z; < 1, we obtain the Linear Knapsack Problem (LKP), which
may be solved by ordering the items according to nonincreasing efficiencies e; = p;/w;
and letting the break item b be defined by

b:min{j: iwi>c}. (4.2)

Dantzig [13] showed that an optimal solution to LKP isgiven by z; = 1forj=1,...,b—1

and z; =0 for j =b+1,...,n while z;, takes on the fractional value
— 51,
= CT 2L Wi (4.3)
Wp
The corresponding pure integer solution 2’ = {z},...,z] } is known as the break solution
and the variables are given by z7; = 1for j=1,...,b—1and 2; =0 for j =b,...,n.

Balas and Zemel [4] observed that an optimal solution z* to KP generally corresponds
to the break solution z' except some few variables who have been changed. Figure 4.1
illustrates this property by measuring how often a variable is set to 2 = 0 for j < b
and x7 = 1 for j > b in the optimal solution z* to KP. The figure is a result of solving
1000 randomly generated data instances of size n = 1000, with the capacity ¢ chosen such
that b = 500 for all instances. The figure shows that the frequency decreases steeply with
j’s distance from b. In average only 3.4 variables differ from the break solution per data
instance.

This observation motivates considering only a small amount of the items around b in
the solution process. A core is simply an interval [s,t], s < b < ¢ of variables satisfying
the ordering

6j26j+1a j:Sa"'at_la
ej>es, j=1,...,5—1, (4.4)
ej<e, Jj=t+1,...,n

72 CHAPTER 4. A MINIMAL ALGORITHM FOR THE 0-1 KP

frequency
50% ’
10%t .
i - item j
100 b 1000

Figure 4.1: Frequency of items j where the optimal solution z} differ from the break
solution z%. Average of 1000 instances.

As long as we only consider variables in the core, this ordering is just as satisfying as a
complete ordering of the items. Starting with [s,¢] = [b, b] we will enumerate all partial
vectors in the core and alternately expand the core to the left and to the right. The set
of partial vectors at any step is given by

Xep={ @s--m) t 24y, €{0,1} }, (4.5)

but we will use some dominance and upper bound tests to fathom unpromising branches.
The enumeration of the core has time complexity O(2751), so any effort possible should
be used to avoid inclusion of new variables to the core. We have chosen to use an upper
bound test for this purpose, fathoming a variable if the corresponding upper bound does
not exceed the current lower bound z. A strong upper bound % is used for this test
(Pisinger [68]), and since all coefficients are integers, we may fathom the variable if 4 is
less than z + 1.

The sorting of the variables according to nonincreasing efficiencies is much less com-
plex, having an average execution time of O(nlogn). Still, quite a lot of computational
effort may be saved by using an upper bound test with a cheaply evaluated bound, to
fathom unpromising variables before the sorting. For this purpose we have chosen the
bound by Dembo and Hammer [14] which can be evaluated in constant time, giving the
reduction algorithm a complexity of O(n). This bound will be denoted the weak upper
bound.

Since all these reductions are done by need, we use the following intervals to denote
enumerated, sorted and reduced intervals (cf. Figure 4.2):

e [s",t"] is the interval of variables which have been tested by an upper bound test to
decide whether a change in the corresponding solution variable x; may lead to an
improved solution.

fathomed sorted enumerated sorted fathomed
| | | | | | |

T T T T T T | > j
1 s s’ s b t ' " n

Figure 4.2: The intervals [s,], [¢',#'] and [s",t"].

4.1. DEFINITIONS AND MAIN ALGORITHM 73

e [¢',t'] is the subset of variables in [s”,¢"] which have weak upper bound larger than
the current lower bound z. The variables in [s',#'] are ordered according to nonin-
creasing efficiencies.

e [s,t] determines the core, i.e. variables which have been enumerated to X ;.

We have [s,t] C [¢',t] C [§",t"], and note that the intervals [s”,s' — 1] and [¢t' + 1,¢"]
contains fathomed variables. With these definitions we may sketch the main algorithm
as:

minknap(n, ¢, p, w,)
Find break item b through partial sorting.
Set [s,t] :=[b,b]; [¢',t'] :== [b,b]; [s",t"] :=[b, b].
Let the lower bound be z := 0 and set X, := {(0), (1)}.
Reduce the set X ;.
while (X, # 0) do
Set s :=s5—1.
if 4(s) > z+1then X;; = X1+ s fi
Reduce the set X ;.
Set t:=1+ 1.
if a(t) >z+1then X,;:=X,, 1+t fi
Reduce the set X ;.
elihw
Define the solution vector through repeated backtracking.

The first step of the MINKNAP algorithm is to find the break item b through partial sorting,
which also returns some intervals H = {Hy,...,H,} and L = {Ly,...,L;} of partially
ordered variables, where variables in H; have higher efficiency than e, while variables in
L; have lower efficiency. This algorithm will be explained further in Section 4.2. After
some initializations, we repeatedly include a new variable s or ¢ to the core, thus obtaining
a larger set X,; = X414+ + s or X, = X, 1 +¢. This dynamic programming recursion
will be described in Section 4.3. After each inclusion of a new variable in X, ; we use some
upper bound tests, to fathom unpromising states x; € X,;. The upper bounds involved
are obtained through linear relaxations of variables s and ¢, and since these variables
may fall outside the sorted set [s',t'], we will expand the core in such cases. This will
be explained in the second part of Section 4.3. We use the strong upper bound test, to
determine whether a new variable s or ¢ should be added to the core. The strong upper
bound % is described in Section 4.5, where we also give a thumb-rule for when it is worth
evaluating the bound. Finally the solution vector z* is defined: Since millions of states
are considered in the dynamic programming, we cannot store all of these, and thus need
a more compact way of representing the solution vector, as discussed in Section 4.6.

74 CHAPTER 4. A MINIMAL ALGORITHM FOR THE 0-1 KP

4.2 A partitioning algorithm for finding the break
item

Balas and Zemel [4] showed that the break item b may be found in O(n) time through
a partitioning algorithm, and Martello and Toth [53] improved this algorithm for finding
an approximate core of certain size. However both of the algorithms only divides the
items in three intervals satisfying (4.4) where we for our purpose are interested in a more
detailed partial ordering. Thus we apply the technique presented in Pisinger [75]:

A complete sorting of the variables according to nonincreasing efficiencies e; may be
done in O(nlogn) by a sorting algorithm like QUICKSORT [32]. The QUICKSORT algorithm
repeatedly picks a middle value A from the interval I = [f,[], and partition the interval
in two parts [f,7 — 1] and [¢,], so that

e; > A jE[fi—1], (4.6)

ej <A, je] (4.7)

Initially [f,] is chosen as [1,n], and the interval is then repeatedly partitioned in smaller
parts, till a complete sorting has been achieved. Since we only need the partial ordering
(4.4) for an initial core [s,t] = [b,b], several of these iterations may be discarded. Any
interval [f,i — 1] in (4.6) with ¥}_} w; < ¢ may be discarded since b cannot be in the
interval. Similarly an interval [i,[] in (4.7) may be discarded if 3>}~ w; > ¢. The discarded
intervals represent a partial ordering of [1, n], and thus we add the end points to two lists
H ={Hy,...,H,} and L = {L4,...,L;}. Upon termination these intervals are ordered
as indicated in Figure 4.3, and we have

Vie H, Vj € Hgyq € > €, k=1,...,h—1, (48)
V’L.ELijELk+1! eiZej, l{]:]_,,l—]_ (49)

If A in each iteration is chosen as the exact median of the values in [f,], then the break
item b may be found in O(n) time. However better average performance is obtained, by
choosing A as the median of some of the values in [f,{]. In the MINKNAP algorithm we
choose A as the exact median of v/l — f randomly chosen items in [f,] for large intervals
(I — f > 100) while A for small intervals is chosen as the median of three elements. This
technique saves up to 30% of the computing time compared to [75].

Notice that if the discarded intervals in H and L need to be sorted completely later
in the algorithm, then we still have not used any more computational effort, than by
performing a complete sorting from the beginning.

1 H, ... H b L ... L n’

Figure 4.3: The lists H and L of discarded intervals.

4.3. A DYNAMIC PROGRAMMING ALGORITHM 75

4.3 A dynamic programming algorithm

A traditional dynamic programming algorithm, as presented by Bellman [5] builds the
optimal solution from scratch by repeatedly adding a new item to the problem. A more
efficient recursion should however take into account, that generally only a few items around
b need to be changed from their LP-optimal values in order to obtain the IP-optimal values.
Thus assume that the items at any stage of the process satisfy the ordering (4.4), and let
fs1(€), (s<b, t>b—1, 0 < &< 2c) be an optimal solution to the core problem:

1P+ X D
fop(€) = max{ 3w+ Y5 wiz; <E p. (4.10)
z; € {0,1} for j=s,...,1

We may use the following recursion for the enumeration

fs1-1(€) if t>b
N fog—1(E—wy) +p if t>0, E—w, >0
fs4(€) = max @ s <b (4.11)
forrp(E+ws) —ps if s<b, e+ w, <2¢
setting
fop-1(€) = —c0 foré=0,...,w—1, (4.12)

fb’bfl(é) =D forc=w,...,2¢,

where p = ¥0_{ p; and w = ¥.)_] w; are the profit and weight sums of the break solution.
Thus the enumeration starts at (s,t) = (b,b — 1) and continues by either removing an
item s from the knapsack, or inserting an item t in the knapsack. An optimal solution
to KP is found as f;,(c). Since generally far less states than 2c¢ need to be considered
at each stage, we have modified the algorithm for dynamic programming by reaching,
obtaining a time bound O(2~**!) for enumerating a core [s,t], in combination with the
pseudopolynomial time bound O(c(t — s + 1)).

The set of all partial vectors in the core [s,t] is given by (4.5), but we will represent
each undominated partial vector x; € X,; by a state (m;, i, v;) where m; = f,4(u;), and
the vector v; is a (not necessarily complete) representation of the binary vector x;. The
set Xsi = {(m1, t1,v1)5 -+, (Tmy s Um) } is kept ordered according to increasing profit
and weight sums (m; < m;41 and p; < pip1) in order to easily fathom dominated states.
An iterative version of the dynamic programming algorithm is described in Pisinger [67],
where it is shown that the recursion basically consists of merging two sets X and X + /,
where X + £ is the set X with item ¢ added or subtracted to/from all states.

Recursion (4.11) allows us to generate all undominated states in X ;, but we will delete
unpromising states after each iteration as sketched in algorithm MINKNAP. Unpromising
states have an upper bound less than z 4+ 1, where z is the current lower bound. For a
state i given by (m;, i, v;) we use the upper bound

ui(i) = mo+ TP e <
w(i) = i (4.13)
UQ(Z) = 7TZ'+(C_UZ¢ if i > ¢,

76 CHAPTER 4. A MINIMAL ALGORITHM FOR THE 0-1 KP

which has been obtained by relaxing the integrality constraints on x,_; and ;1 to x5_1 >
0 and x;y1 > 0. Since s—1 or t+1 may fall outside the current reduced and sorted interval
[s',t'], we have to extend the core in such cases. This is done the following way:

e If s—1 < s’ and all intervals H have been reduced, then the core cannot be expanded
further to the left, thus we choose ps_; = oo and ws_; = 1 for the bound (4.13).
Similarly if £ + 1 > ¢’ and all intervals L have been reduced we choose p;;1 = 0
and wyy1 = 1. In both cases the bounds will ensure that states which cannot be
improved further are fathomed.

e Otherwise choose an appropriate interval Hy, or L;, and reduce the concerned vari-
ables through a (weak) upper bound test. This test will be described in the next
section.

e If all variables in Hj, or L; have been fathomed through the upper bound test, we can
choose any variable from the concerned interval as s — 1 resp. ¢+ 1 in the reduction
(4.13). Otherwise the remaining variables are ordered according to nonincreasing
efficiencies and added to the set of sorted variables [, #']. Equation (4.13) may then
be used directly.

The bound (4.13) may also be used for deriving a global upper bound on KP. Since any
optimal solution must follow a branch in X, the global upper bound corresponds to the
upper bound of the most feasible branch in X ;. Therefore a global upper bound on KP
is given by

Ukp = Iirg(xu(z). (4.14)
Since the efficiency of item ¢ + 1 will be decreasing during the solution process, and the
efficiency of s — 1 will be increasing, uxp, will become more and more tight as the core
gradually is extended. For (s,t) = (1,n) we get uxp = z for the optimal solution z.

4.4 Weak reduction

Assume that the solution vector x corresponding to the current lower bound z has been
saved. If an upper bound on KP with the additional constraint z; = 0, j < b (resp.
xzj =1, 7 > b) is less than z + 1 we may conclude that the branch z; = 0 (resp. z; = 1)
will never lead to an improved solution, and can thus fix z; at 1 (resp. 0). Thus let u)
(resp. ujl) be an upper bound on KP with the additional constraint z; = 0 (resp. z; = 1).
Using the bounds by Dembo and Hammer [14] we get

_ T+ w, .

U,? = p—pj-i-(Tb])pb, j=1...,b—-1, (4.15)
_ r— w; .

uj = p—i—pj—i-—(wb])p—b, j=b...,n,

where P is the profit sum Zé’;ll p; and r is the residual capacity ¢ — Ei-’;ll w;. The Dembo
and Hammer bound is not so tight, but it only demands the partial ordering (4.4) and

4.5. STRONG UPPER BOUND 7

it can be evaluated in constant time, thus the reduction has complexity O(n) which is
lower than the complexity of a sorting of the items. Since the reduction is performed
dynamically throughout the solution process, and not like in traditional algorithms as a
part of the preprocessing, we may expect that a better lower bound is found during the
enumeration, thus somehow compensating for the weakness.

For a given interval [f,] from Hj or L; we test whether u} < z+1 (resp. u; < z+1)
for each item j. Is this the case, we swap item j past the end of [s”,¢"] and extend the
interval correspondingly. Otherwise item j is swapped to a position past the end of [s', #].
Finally the the extended set [s,s — 1] or [t + 1,] is sorted.

4.5 Strong upper bound

Since the addition of a new item £ to the core is computationally very expensive, a strong
upper bound test should be used for checking whether the inclusion seems promising.
The ultimate check is to determine whether any states in X + ¢ will pass the reduction
(4.13). For each possible fathoming test (4.13), this is the strongest possible upper bound
for reducing item /¢, since if the inclusion of / to the core implies that a new promising
branch is introduced to X, clearly we cannot ommit /.

A state 7 in X + £ is the sum (m; + P, u; + W, v; U {£}) of the corresponding state i in
X and the variable £ (added or subtracted), so an upper bound for the state is

. (i) = (m+p)+ (c= Mfw;:u) Pitl it 1+ <o,
u(i) = (c = s —) (4.16)
Up(i) = (m+p)+ ML)S_I Ps=1 if 40 > ¢,

where we simply have used (4.13) for the set X + ¢. An upper bound for the inclusion of
variable ¢ into the core is thus given by

e = max a(7). (4.17)
This bound may be recognized as the m-bound presented in Pisinger [68], which again is a

generalization of the enumerative bound presented in Martello and Toth [53]. Note that
the functions %, and 4, may be written

o . . . W
U1(1) = ui(?) + p— w?ﬂla

(4.18)

U’Q(l) :u2(7’) + p— Wy_1 ?
where u; (i) and us(7) are the upper bounds of state ¢ € X as given by (4.13).

Proposition 4.1 The bound i, exceeds the lower bound z if and only if a state in X + £
will pass the reduction (4.13).

Proof Assume that %, = a with a > z+ 1. Since 4, is the maximum of bounds (4.16),
choose the state i« € X which satisfies @(i) = a. The state j € X + £, which is obtained

78 CHAPTER 4. A MINIMAL ALGORITHM FOR THE 0-1 KP

by adding variable ¢ to i, will also have upper bound a > z + 1, meaning that it passes
the fathoming test (4.13).

Contrary, if a state j in X + ¢ passes the fathoming test (4.13), its upper bound must
exceed z, thus forcing the bound %, to exceed z. O

Unfortunately the complexity of determining @, is O(m), where m is the number of
states in X, ;, meaning that the computational effort for deriving the strong upper bound
corresponds to the computational effort of including variable ¢ to the core. Therefore we
will only evaluate the bound if there is a good chance of fathoming the concerned variable.

Note that (p, W) corresponds to (ps1, wey1) or (—ps_1, —ws 1) since we are testing the
inclusion of variable ¢ + 1 or s — 1. So in the first case we have @;(i) = u1(i) and in the
second (i) = us (i), which may be verified by inserting p, @ in (4.18). Since u (i) > z+1
and uy(7) > z + 1 due to the fathoming test(4.13), the bound %, can only be less than
z+1if the sets {i € X;; : p; + w1 < ¢}, respectively {i € X;; @ i —ws—q > ¢} are
empty. We have shown the following proposition:

Proposition 4.2 If / = t+ 1 and py < ¢ — wyyy then 4y > 2+ 1. If £/ = s—1 and
M > €+ wy_y then 4y > 2+ 1.

Computational experience show, that if the criteria in Proposition 4.2 do not hold, then
Uy < z + 1 in more than 70% of the cases. Therefore the evaluation of %, in such cases is
worth the effort, since we generally may fathom the concerned variable.

4.6 Finding the solution vector

According to Bellmans [5] classical description of dynamic programming, the optimal
solution vector z* may be found by backtracking through the sets of states. But this
technique means that all sets of states should be saved during the solution process. In
the computational experience it is demonstrated that the number of states may be over
2.5 millions in each iteration of (4.11). With n = 100000 as a measure for the number of
iterations, we would need to store billions of states, so another strategy had to be chosen.
A promising approach seems to be, that only the last a changes in the solution vector are
saved in the state variable v. In our implementation we chose a = 32.

Assume that v consists of a indices of the items, that were added or subtracted to the
corresponding state in recursion (4.11). Whenever we find an improved solution in X,
the best state (u,m,v) is saved. When the algorithm terminates, all variables are set to
the break solution z; =1for j =1,...,b—1and z; =0 for j =,...,n. Then we make
the changes registered in v:

zj=1—z; for je€w,

m=T+ > P > P

jev, j<b jev, j>b (4.19)

W=pt 3 owi— Y w

J€v, j<b J€v, j>b

4.7. MINIMALITY 79

If the backtracked profit and weight sums 7', ' correspond to the profit and weight sums
P, w of the break solution, we know that the obtained vector is correct. Otherwise we
solve a new KP, this time with capacity ¢ = i/, lower bound z = 7’ — 1, and global upper
bound u = #’. The process is repeated until the solution vector x is completely defined.

This technique has proved very efficient, since generally only a few iterations are
needed. A maximum of 16 iterations has been observed for large strongly correlated
data instances, but otherwise one or two iterations suffice. In the worst case 12% of the
solution time was used for reconstructing the solution vector. Compared to saving all
states on an external device (which is hundreds of times slower than the main memory)
it is considerably more efficient to re-evaluate the states.

4.7 Minimality

We end this presentation by showing some minimality properties of the MINKNAP algo-
rithm. For the following discussion assume that an ordering of the items has been chosen,
such that ties are broken in a uniform way. Thus we have

e1 > e > ... > e, (4.20)

Among all current algorithms that solve some kind of core problem, the algorithm by
Martello and Toth [52] is the most efficient. It may be sketched as follows:

Enumerative core algorithm

Given a core [s, t], satisfying the ordering (4.4).

Solve the core problem through enumeration, obtaining a lower bound z.

Let uxp be an upper bound on the states X, given by (4.14).

If ugp < z then stop.

Reduce the items, by using upper bound tests to fix variables at their optimal values.
If all the items were reduced then stop.

Sort remaining items, and solve the problem through enumeration.

N O Ol W N~

The algorithm by Balas and Zemel [4] is weaker than the above algorithm, as it does
not enumerate the core completely in Step 2, and since it is missing the termination rule
in Step 4. Also the algorithm by Pisinger [75] is weaker, as there is no way of limiting
the enumeration to an interval [s,¢]. Finally the algorithm by Fayard and Plateau [24] is
weaker than the above framework, as it only use the break item b for deriving upper and
lower bounds, thus it may be seen as an algorithm enumerating a core C' = [b, b].

We will denote algorithms following the above framework by enumerative core algo-
rithms, and thus we say that a core problem [s,t] is enumeratively solvable if an enumer-
ative core algorithm will stop before the last exhaustive search is performed in Step 7.

Definition 4.1 A core C = [s,t] is minimal, if it is the smallest interval of items, satisfy-
ing the ordering (4.4), such that the corresponding core problem is enumeratively solvable.
Thus

Crnin = mitn{ t — s+ 1: The core [s,t] is enumeratively solvable} . (4.21)

80 CHAPTER 4. A MINIMAL ALGORITHM FOR THE 0-1 KP

Proposition 4.3 The MINKNAP algorithm enumerates at most the smallest symmetrical
core [s,t] which is enumeratively solvable.

Proof The core is symmetrical since the MINKNAP algorithm always extends the core in
a symmetrical way. Assume that [s,] is the smallest symmetrical core which is enumer-
atively solvable, meaning that an enumerative core algorithm will terminate in Step 4 or
6. We want to prove that MINKNAP also will terminate when reaching C' = [s,t|. Notice
that for C' = [s,], the MINKNAP algorithm will hold the same lower bound z as derived
in Step 2 of an enumerative core algorithm.

If the enumerative core algorithm terminates in Step 4, then

=) < z. .
Uxp = Max u(i) < z (4.22)

But this means that when the MINKNAP algorithm reaches the core [s,t| then all states
i € X, will be fathomed due to the reduction rule (4.13). Thus algorithm MINKNAP will
terminate immediately after reaching this core.

If the enumerative core algorithm terminates in Step 6, then the reduction phase in
Step 5 fathomed all items, meaning that

u2<z+1 for 7=1,...,s—1, (4.23)
u; <z+1 for j=t+1,...,n, .

where Martello and Toth use the so-called Martello-Toth upper bound for this reduction
[46]. But the strong upper bound @, given by (4.17) hold the Martello-Toth upper bound
as a special case with X, = Xp;, thus 4; < u? for j =1,...,5s—=1and 4; < ujl for
j =t+1,...,n. This implies that all items j = 1,...;,s —1and j =t+1,...,n will
be fathomed by the strong upper bound, meaning that the MINKNAP algorithm will not
enumerate any items outsides [s, t].

Note that when we derive the Martello-Toth upper bound for item j then b is given
as the break item for (4.1) with additional constraint z; = 0 resp. z; = 1. But for any
value of b € [s,], still @, is tighter than the Martello-Toth upper bound. O

Actually the MINKNAP algorithm generally enumerates fewer items than those in the
smallest symmetrical core which is enumeratively solvable, as some of the items in [s,]
may be fathomed by the strong reduction during the solution process. In addition we
notice, that there is no obvious better choice of a core than a symmetrical one, since
knowing in which direction we should focus the search demands some knowledge on the
optimal solution vector, which we obviously do not have.

On the other hand, we have applied the fact that a unique ordering (4.20) has been
chosen. Thus in general Proposition 4.3 only holds when we look apart from permutations
of items with same efficiency. This is of minor significance for problems with no correlation
between the profits and weights, as most items will have distinct efficiencies, but for the
so-called Subset-sum Problems where p; = w;, Proposition 4.3 is closely related to the
chosen ordering.

4.8. COMPUTATIONAL EXPERIENCE 81

Finally we notice that if an enumerative core algorithm is extended with tighter
bounds, as recently has been done in Martello and Toth [55], these may simply be incor-
porated in the MINKNAP algorithm, such that a minimal core still may be obtained.

The sorting and reduction effort is also limited in algorithm MINKNAP, as we only do
these operations by need. Actually we have established a hierarchy between the individ-
ual operations according to the involved complexity:

1 Highest priority is given to a minimal core size, as enumerating the core demands
O(2=5*1) operations.

2 Applying the strong upper bound has second priority, as determining @ has com-
plexity O(m).

3 The sorting has complexity O(nlogn) thus this part has third priority.

4 Reducing the items with the Dembo-and-Hammer bound may be done in linear
time, thus this part has lowest priority.

For each of the above operations, we make least possible effort, as the operations only are
performed when it cannot be avoided, and the individual operations are performed such
that an item only is considered at level & when it passed all lower levels of the hierarchy.

4.8 Computational experience

The presented algorithm has been implemented in ANSI-C, and a complete listing is
available from the author on request. The following results have been achieved on a
HP9000/730 computer using the standard HP-UX C compiler with option -O (optimiza-
tion).

We will consider how the algorithm behaves for different problem sizes, instance types,
and data ranges. Four types of randomly generated data instances are considered as
sketched below. Each type will be tested with data range R = 100, 1000 and 10000 for
different problem sizes n. The capacity c is always chosen as half of the total weight
sum ¢ = % 7—1wj. For each instance, we choose w; randomly in [1, R], while p; is
chosen according to the specific instance type. Uncorrelated data instances are generated
by chosing p; randomly in [1, R]. Weakly correlated data instances choose p; randomly
distributed in [w; — R/10,w; + R/10] such that p; > 1. Strongly correlated data instances
have p; = w; + 10, and finally Subset-sum data instances have p; = w;.

For each instance type, size and range, we construct and solve 50 different data in-
stances. The presented results are average values or extreme values. If a problem was
not solved within 24 hours, this is indicated by a “—” in the tables. We will compare the
computing times of MINKNAP to the MT2 algorithm by Martello and Toth [52]. The code
for MT2 was obtained from [53], in which MT2 also is compared to several algorithms for
KP, showing that MT2 outperforms any of these. The MT2 code was compiled using the
standard HP-UX FORTRAN compiler with option -O (optimization).

82 CHAPTER 4. A MINIMAL ALGORITHM FOR THE 0-1 KP

Table I: Final core size (number of items). Average of 50 instances.

Uncorrelated Weakly correlated Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 7 8 9 8 14 15 35 41 47 8 11 15
300 8 11 13 8 17 20 132 140 112 8 11 15
1000 7 16 17 8 16 25 428 384 386 7 11 15
3000 7 17 21 7 14 29 | 1105 1120 1270 8 12 14
10000 | 10 15 27 8 12 30 | 4119 3662 4003 8 12 15
30000 | 23 11 29 7 13 26 | 11938 12768 11738 7 11 15
100000 | 34 12 27 8 13 18 | 37144 43420 39649 7 11 15

Table II: Exact core size (number of items). Average of 50 instances.

Uncorrelated Weakly correlated | Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 4 4 4 6 9 10 9 12 13 6 9 13
300 5 7 8 6 12 16| 19 20 19 6 9 12
1000 5 10 11 6 12 18 | 36 33 33 6 9 13
3000 5 11 12 5 10 19| 54 56 64 5 10 12
10000 8 11 17 6 10 20 | 106 105 113 6 9 12
30000 | 16 9 18 5 11 18 | 178 192 189 5 9 12
100000 | 25 10 17 6 10 14 | 462 365 359 5 9 12

First Table I shows the average core size for solving KP to optimality. The core size is
measured as the number of items in X, i.e. (¢ —s+ 1) minus the variables fathomed by
the strong upper bound test. For uncorrelated, weakly correlated and subset-sum data
instances, the core size is very small, showing slight tendencies to grow with the data
range. For strongly correlated data instances, the core size is large, since about half of
the items must be considered in order to solve the problem.

These results should be compared to the exact core sizes given in Table II. Balas and
Zemel [4] defined the exact core as the variables between first and last variable } in the
optimal solution which differ from the break solution :c; It is seen, that for uncorrelated,
weakly correlated and subset-sum problems, our minimal core is of same magnitude as the
exact core size. However for strongly correlated instances, the exact core size is generally
small, but we need to enumerate considerably more items in order to prove optimality
with an enumerative core algorithm. Thus although we somehow knew the exact core in
advance, we would not be able to prove optimality by current techniques.

Next Table III shows the average percentage of items, which need to be tested by
the weak upper bound in order to solve KP. The presented numbers are determined as
(t" —s"4+1)/n. We observe the interesting property, that large-sized uncorrelated, weakly
correlated and subset-sum data instances generally can be solved without testing more
than a few percent of the items for small data ranges R = 100 and R = 1000. On the
other hand strongly correlated data instances, and all small-sized data instances need a
complete testing of the variables.

Table IV gives the maximum number of states obtained in the solution process. For
uncorrelated, weakly correlated and subset-sum data instances, less than 65000 states are

4.8. COMPUTATIONAL EXPERIENCE 83

Table III: Percentage of all items which have been tested by the weak upper bound.
Average of 50 instances.

Uncorrelated Weakly correlated | Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 | 79 93 96 | 55 100 9| 79 94 93 | 50 58 66
300 | 65 96 97 | 20 96 99 | 88 97 86 | 27 44 51
1000 | 12 88 95 5 68 98 | 94 85 92 | 20 33 28
3000 5 74 96 2 22 94 | 78 81 95 | 11 16 20
10000 2 31 90 0 8 78 | 93 83 86 4 3 14
30000 2 7 85 1 2 38| 87 85 8 | 10 5 7
100000 0 1 54 0 0 12| 89 91 90 0 1 5

generated, indicating that the dynamic programming algorithm without complications
may be applied on most computers. Strongly correlated data instances may involve more
than 2.5 million states, which in our implementation takes up about 30Mb RAM. The
pseudopolynomial time bound of recursion (4.11) means that up to 2c states should be
saved at each stage, but as we use dynamic programming by reaching, this space bound is
too pessimistic. Large sized strongly correlated instances actually consider far less than
1% of the 2c¢ states.

Finally Table V shows the average computing time for each of the considered data
instances. It is seen, that easy data instances may be solved in a fraction of a second even
if the number of variables is 100 000. Strongly correlated data instances demand consider-
ably more computational effort, but are still solved within one hour of computation time
on average.

This should be compared to the computing times for MT2 given in Table VI. It
is seen, that MT2 is not able to solve strongly correlated data instances of large size,
and moreover the algorithm has some anomalous occurrences for large uncorrelated and
weakly correlated data instances. In these situations some instances could not be solved
within 24 hours of computational time. A further study of this behavior is considered in
[70]. Additional computational experiments with the MINKNAP algorithm may be found
in Appendix A.

Table IV: Largest set of states in dynamic programming (in thousands). Maximum of 50
instances.

Uncorrelated Weakly correlated | Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 0 0 0 0 0 0 1 8 78 0 6 63
300 0 0 0 0 1 1 1 14 148 1 5 53
1000 0 1 1 1 2 3 3 25 287 0 5 55
3000 0 1 1 0 4 7 4 45 425 0 5 60
10000 0 3 6 1 5 12 8 74 764 0 6 52
30000 2 4 9 0 11 32| 15 130 1407 0 6 55
100000 4 4 19 0 27 65| 37 250 2547 0 5 48

84 CHAPTER 4. A MINIMAL ALGORITHM FOR THE 0-1 KP

Table V: Total computing time in seconds (MINKNAP). Average of 50 instances.

Uncorrelated Weakly correlated Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 [100 1000 10000 | 100 1000 10000

100 | 0.00 0.00 0.00 | 0.00 0.00 0.00 | 0.00 0.03 0.44 | 0.00 0.00 0.06
300 | 0.00 0.00 0.00 | 0.00 0.00 0.00 | 0.02 0.18 1.63 | 0.00 0.01 0.06
1000 | 0.00 0.00 0.00 | 0.00 0.00 0.01 | 0.09 0.63 7.62 | 0.00 0.01 0.06
3000 | 0.00 0.01 0.01 | 0.00 0.01 0.03 | 0.24 2.30 42.89 | 0.00 0.01 0.06
10000 | 0.01 0.01 0.03 | 0.01 0.01 0.06 | 1.25 1041 163.15 | 0.01 0.02 0.07
30000 | 0.03 0.03 0.07 | 0.03 0.03 0.08 | 3.19 4328 496.47 | 0.05 0.04 0.10
100000 | 0.12 0.10 0.17 | 0.10 0.12 0.16 | 14.02 17845 2208.10 | 0.11 0.12 0.20

Table VI: Total computing time in seconds (MT2). Average of 50 instances.

Uncorrelated Weakly correlated Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 | 0.00 0.00 0.00 | 0.00 0.00 0.01 | 2.78 2.68 21.16 | 0.00 0.00 0.01
300 | 0.00 0.00 0.00 | 0.00 0.00 0.01 — — — | 0.00 0.00 0.02
1000 | 0.00 0.00 0.01 | 0.00 0.01 0.02 — — — | 0.00 0.00 0.02
3000 | 0.00 0.01 0.02 | 0.00 0.01 0.07 — — — | 0.00 0.00 0.02
10000 | 0.02 0.03 0.07 | 0.02 0.04 0.16 — — — 1 0.01 0.01 0.03
30000 | 2.47 0.07 0.20 | 0.05 0.61 0.26 — — — 1 0.03 0.03 0.05
100000 — 0.28 0.56 | 0.25 — 0.56 — — — 1 0.12 0.12 0.15

4.9 Conclusions

We have presented a complete algorithm for the exact solution of the 0-1 Knapsack Prob-
lem. The complexity of the presented MINKNAP algorithm is

O(n +min{ 2% c(t —s+1)}), (4.24)

which for small core sizes |C| = ¢t — s + 1 results in linear solution times, while difficult
problems, demanding a complete enumeration, are pseudopolynomially bounded. This
time bound is strengthened by the fact, that the algorithm solves KP with a minimal
symmetrical core, thus as the computational experiments demonstrate, several frequently
occurring instances are actually solved in linear time. The pseudopolynomial time bound
on the other hand implies that even strongly correlated instances may be solved in rea-
sonable time.

It is interesting to compare the obtained results to previous work: Balas and Zemel [4]
defined the core as the interval of sorted variables between first and last variable z; which
differ from the break solution z. Even if such a core could be obtained a priori it would
not guarantee that optimality could be proved by any upper bound, so this approach
seems inadequate. Martello and Toth [52] on the other hand chose a larger interval of
variables around b for the core, namely n variables if n < 100, and 4/n variables if n > 100.
In Martello and Toth [53] this core size is for unknown reasons changed to the double
size. The presented minimal core sizes in Table I show that far smaller core sizes may be
applied for uncorrelated and weakly correlated data instances, while strongly correlated
data instances demand larger core sizes. It should be emphasized, that the here stated
minimality of the core only holds for enumerative core algorithms. Completely different

4.9. CONCLUSIONS 85

approaches may show better results, and even similar types of algorithms may perform
better if other upper bounds are applied.

Apart from showing some minimal properties, we have derived a very efficient algo-
rithm for the solution of KP. For uncorrelated, weakly correlated and subset-sum data
instances it performs better and more stable than the so far best algorithm MT2. For
strongly correlated data instances no algorithm has ever been able to solve instances of
this size.

Appendix A: Additional computational results

In this section we bring the results of some additional computational experiments with
the MINKNAP algorithm.

First, Table VII brings the number of iterations, which are needed to define the com-
plete solution vector as described in Section 4.6. For all instances except the strongly
correlated, slightly more than one iteration is needed on the average, meaning that the
compact representation of the solution vector generally is sufficient. Only in a few cases,
an additional iteration is needed, meaning that there is only a small overhead for this
part of the algorithm. For strongly correlated instances, however up to a dozen iterations
are needed, but still a negligible part of the solution time is used for finding the solution
vector.

Table VIII shows the gap I' between the LP-optimal and the integer-optimal solu-
tion. According to Balas and Zemel [4], the hardness of a Knapsack Problem depends on
the correlation of the data and the gap I'. This explains that instances with coefficients
generated in a large range R, generally are harder to solve than the same instances with
coefficients generated in a small range, as the gap grows with increasing data range. For
strongly correlated instances, [' is on the average constant around five. The increasing
computational time for larger data ranges should merely be sought in the pseudopolyno-
mial solution time of MINKNAP: Each time R is increased by a factor, the capacity ¢ and
thus the time-bound O(nc) are increased by the same amount.

Finally Table IX shows the standard deviation of the computational times. Apart
from the strongly correlated instances — which apparently have a very large variation in

Table VII: Number of iterations used for obtaining the solution vector. Average of 50
instances.

Uncorrelated Weakly correlated | Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 | 1.0 1.0 1.0 | 1.0 1.0 1.0 | 1.0 1.0 1.0 | 1.0 1.0 1.0
300 | 1.0 1.0 1.0 | 1.0 1.0 1.0 | 1.0 1.0 1.0 | 1.0 1.0 1.0
1000 | 1.0 1.0 1.0 | 1.0 1.0 1.0| 1.6 1.6 1.5 | 1.0 1.0 1.0
3000 | 1.0 1.0 1.0 | 1.0 1.0 1.2 | 2.3 2.3 251 1.0 1.0 1.0
10000 | 1.0 1.0 1.1 | 1.0 1.0 1.3 | 3.8 3.9 41| 1.0 1.0 1.0
30000 | 1.2 1.0 1.0 | 1.0 1.0 1.1 | 4.7 6.6 6.5 | 1.0 1.0 1.0
100000 | 1.4 1.0 1.1 | 1.0 1.0 1.0 | 5.0 11.7 119 | 1.0 1.0 1.0

86

CHAPTER 4. A MINIMAL ALGORITHM FOR THE 0-1 KP

Table VIII: Gap I' between LP-optimal solution and integer-optimal solution. Average of
50_instances.

Uncorrelated Weakly correlated | Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 | 3.6 406 4481 | 0.9 16.5 153.8 | 3.9 4.5 56 | 0.0 0.0 0.0
300 | 1.7 22.0 2395 0.1 6.0 72.8 | 4.6 5.0 4.0 0.0 0.0 0.0
1000 | 0.3 8.6 88.9 | 0.0 1.8 27.5 | 4.9 4.2 41| 0.0 0.0 0.0
3000 | 0.1 3.0 38.1 | 0.0 0.5 9.8 | 4.1 4.1 5.0 | 0.0 0.0 0.0
10000 | 0.0 0.8 14.8 | 0.0 0.0 31| 49 4.4 4.8 | 0.0 0.0 0.0
30000 | 0.0 0.2 5.7 | 0.0 0.0 1.0 | 4.3 4.9 45| 0.0 0.0 0.0
100000 | 0.0 0.0 1.7] 0.0 0.0 02| 4.1 4.9 46| 0.0 0.0 0.0

Table IX: Standard deviation computational times MINKNAP. Average of 50 instances.

Uncorrelated Weakly correlated Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 [100 1000 10000 | 100 1000 10000
100 | 0.00 0.00 0.00 | 0.00 0.00 0.00 | 0.01 0.03 0.48 | 0.00 0.01 0.05
300 | 0.00 0.00 0.00 | 0.00 0.00 0.00 | 0.01 0.14 1.87 | 0.00 0.01 0.04
1000 | 0.00 0.00 0.00 | 0.00 0.00 0.01 | 0.07 0.65 8.65 | 0.00 0.01 0.05
3000 | 0.00 0.00 0.00 | 0.00 0.00 0.02 | 0.24 2.44 39.85 | 0.01 0.01 0.05
10000 | 0.00 0.00 0.01 | 0.00 0.01 0.03 | 1.13 10.78 154.54 | 0.01 0.01 0.04
30000 | 0.01 0.01 0.02 | 0.01 0.01 0.04 | 296 3872 51258 | 0.04 0.03 0.08
100000 | 0.03 0.01 0.04 | 0.00 0.06 0.05 | 14.04 156.55 2382.21 | 0.01 0.05 0.11

the running times — most of the variations are very small, and considerably smaller than
one. This demonstrates that MINKNAP has a very stable behavior.

Chapter 5

Avoiding Anomalies in the MT2
Algorithm by Martello and Toth

The MT2 algorithm by Martello and Toth for the solution of large sized 0-1
Knapsack Problems shows anomalous behavior: Some instances are solved in frac-
tions of a second, while similar instances cannot be solved in hours. In this chapter
it is shown that the anomalous behavior is due to an a-priori identification of the
so-called core. By evading the solution of the core problem, we are able to avoid the
anomalous behavior.

Keywords: Knapsack Problem, Branch-and-bound.

5.1 Introduction

The MT2 algorithm by Martello and Toth [52] solves the Knapsack Problem (KP): Given
n items to pack into a knapsack of capacity c, each item having a profit p; and weight
w;. Select those items which maximizes the profit sum without having the weight sum
to exceed c. Assuming that all coefficients are positive integers we get the following
formulation:
maximize z = ijxj
j=1

n
subject to ijxj <c
j=1
z; €{0,1}, j=1,...,n.

Balas and Zemel [4] observed, that sorting and reduction often constitutes the majority
of the computational effort when KP is solved. In order to avoid this problem, they
proposed to consider only a small amount of the items — the so-called core — where
there is a large probability for finding an optimal solution. The core is defined as a small
subset of items with efficiency e; = p;/w; close to that of the break item b (the fractional
variable of an LP-solution).

Adapting this strategy, the MT2 algorithm consists of the following steps: a) A core is
derived through a modified version of the partitioning algorithm by Balas and Zemel. b)

87

88 CHAPTER 5. AVOIDING ANOMIALIES IN THE MT2 ALGORITHM

Table I: Total computing times of the original MT2 algorithm. HP9000/730 seconds,
average of 50 instances.

Uncorrelated Weakly correlated
n\ R | 100 1000 10000 | 100 1000 10000
1000 | 0.00 0.00 0.01 | 0.00 0.01 0.02
3000 | 0.00 0.01 0.02 | 0.00 0.01 0.07
10000 | 0.02 0.03 0.07 | 0.02 0.04 0.16
30000 | 2.47 0.07 0.20 | 0.05 0.61 0.26
100000 0.28 0.56 | 0.25 0.56

The core problem is solved through branch-and-bound. ¢) If an optimal solution was found
stop, otherwise use some logical tests to fix as many variables as possible at their optimal
values. d) Sort the remaining items, and solve the problem through branch-and-bound.

The core is chosen a-priori as y/n items for large instances (n > 100), but as observed
by Martello and Toth [53], and Pisinger [75,82] this approach leads to an unstable behav-
ior: Most instances are solved in a fraction of a second, while certain similar instances
cannot be solved in 24 hours.

The behavior is illustrated in Table I, where the algorithm is tested for different
data instances, and with different data range R = 100, 1000 and 10 000. We consider the
following problem types: Uncorrelated data instances: p; and w; are randomly distributed
in [1, R]. Weakly correlated data instances: w; randomly distributed in [1, R] and p;
randomly distributed in [w; — R/10,w; + R/10]. For each problem the capacity is chosen
as c= %2?21 w;, and a “—” indicates that the 50 instances were not solved in 24 hours.

The table shows that there are some anomalous occurrences for small-ranged uncorre-
lated instances (n = 30000, 100 000), and for medium-ranged weakly correlated instances
(n = 100000). In each series of 50 instances it is only one or two instances which takes
up all the computational time.

5.2 The core problem

A closer study of the anomalous occurences shows, that almost all the computation time
is spent for solving the core problem. The cause seems to be, that in certain situations the
core is chosen such that there is a very small variation in the corresponding weights. This
makes it very difficult to obtain a filled knapsack and thus a good lower bound, resulting
in an extensive branching.

Table IT shows a section of a difficult core. All weights are around 485 or 970, making
it difficult to fill the knapsack to the limit if the residual capacity is not close to a multiple
of 485. Since the core is fixed, we cannot simply include lighter items from outsides the
core. It might be expected that solving the original knapsack problem generally is easier
than solving the core problem, since there is a larger variation in the weights of the original
problem.

To test this theory further, we modified the MT2 algorithm to solve the core problem

5.3. CONCLUSION 89

Table II: Section of a difficult core. Weakly correlated instance, n = 100 000, R = 1000.
pj _ Wj €j

981 983 | 0.9979653
980 982 | 0.9979633
979 981 | 0.9979612
978 980 | 0.9979591
977 979 | 0.9979571
976 978 | 0.9979550
487 488 | 0.9979507
974 976 | 0.9979507
970 972 | 0.9979423
10 | 485 486 | 0.9979423
11 | 485 486 | 0.9979423
12 | 970 972 | 0.9979423
13 | 970 972 | 0.9979423
14 | 484 485 | 0.9979381
15 | 484 485 | 0.9979381
16 | 967 969 | 0.9979360
17 | 964 966 | 0.9979296
18 | 482 483 | 0.9979296
19 | 962 964 | 0.9979252
20 | 961 963 | 0.9979231
21 | 959 961 | 0.9979188
22 | 958 960 | 0.9979166
23 | 957 959 | 0.9979144

© 00~ DT W S

heuristically, thus avoiding the algorithm to be stuck When a difficult core appeared. Two
heuristics from Plsmger [75] were used: Let = Y.°~{ p; be the profit sum of the break
solution, and w = Y.'~] w; be the corresponding weight sum. Then the forward greedy
solution is the best obJectlve value when adding one item to the break solution

2 = max. {p+p; : w+w; <c},

and the backward greedy solution is the best objective value when adding the break item
to the break solution and removing another item

2p = _nqaxb{ﬁ—i-pb—pj D W+ w, —wj < ¢}
J=150

Both bounds are evaluated in O(n) time, and we choose the best of z; and 2, as the lower
bound. The corresponding computational times are given in Table ITI. All anomalous
occurrences have completely disappeared, but this is obtained on behalf of some slightly
increased computational times in certain cases.

5.3 Conclusion

It was demonstrated that a primitive algorithm, which does not solve the core problem
exactly, obtains comparable times to the original MT2 algorithm, completely avoiding

90 CHAPTER 5. AVOIDING ANOMIALIES IN THE MT2 ALGORITHM

Table III: Total computing times of the MT2 algorithm with heuristic solution of the core
problem. HP9000/730 seconds, average of 50 instances.
Uncorrelated Weakly correlated
n\ R | 100 1000 10000 | 100 1000 10000
1000 | 0.00 0.00 0.01 | 0.00 0.01 0.02
3000 | 0.01 0.01 0.01]0.01 0.01 0.06
10000 | 0.02 0.03 0.05 | 0.02 0.04 0.15
30000 | 0.07 0.10 0.17] 0.05 0.22 0.28
100000 | 0.32 0.42 0.57 1 0.24 0.42 0.93

Table IV: Total computing times using an expanding core. HP9000/730 seconds, n in
thousands, average of 50 instances.
Uncorrelated Weakly correlated
n\ R | 100 1000 10000 | 100 1000 10000
1000 | 0.00 0.00 0.01 | 0.00 0.02 0.08
3000 | 0.00 0.02 0.04 | 0.00 0.02 0.33
10000 | 0.01 0.03 0.17 | 0.01 0.03 0.99
30000 | 0.04 0.06 0.48 | 0.04 0.12 0.87
100000 | 0.18 0.20 1.26 | 0.17 0.19 0.71

anomalous occurrences. Since any application would be more interested in an uniform
behavior at the price of some milliseconds, the modified algorithm is preferable.

We may conclude that solving the core problem is a risky affair, since the algorithm
may be stuck in an unsolvable problem, with no possibility of introducing new items
from outsides the core. This does however not mean that solving the core problem is a
deviation. Pisinger [75] had success with a depth-first branch-and-bound algorithm which
solves an expanding core problem: Each times the branching reaches the border of the
core, new items are simply introduced. This approach ensures that the algorithm can
obtain the necessary variation in the weights, such that a good lower bound is easily
found. The corresponding computational times are given in Table IV. It is seen that the
algorithm has a very stable behavior, but due to its simple branching structure, it spends
more time than MT2 for solving branching intensive instances.

Chapter 6

Core Problems in Knapsack
Algorithms

Since Balas and Zemel a dozen years ago introduced the so-called core problem
as an efficient way of solving the Knapsack Problem, all the most successful algo-
rithms have been based on this idea. Balas and Zemel proved, that there is a high
probability for finding an optimal solution in the core, thus avoiding to consider the
remaining items. However this chapter demonstrates, that even for randomly gener-
ated data instances, the core problem may degenerate, making it difficult to obtain
a reasonable solution. This behavior has not been noticed before due to inadequate
testing, since the capacity usually is chosen such that the core problem becomes as
easy as possible.

A model for the expected hardness of a core problem as function of the capacity
is presented, and it is demonstrated that the hitherto applied test instances are
among the easiest possible. As a consequence we propose a series of new randomly
generated test instances, and show how recent algorithms behave when applied to
these problems.

Keywords: Knapsack Problem; Analysis of algorithms; Expected Hardness.

6.1 Introduction

We consider the following problem: Given n items with corresponding profits p; and
weights w;. The Knapsack Problem is the task of packing some of these items in a
knapsack of capacity c, such that the profit sum of the included items is maximized.

In order to solve the problem efficiently, it is suitable to order the items according to
nonincreasing profit-to-weight ratios, since in this way tight bounds may be derived in a
branch-and-bound algorithm. Balas and Zemel [4] noted, that this sorting often takes up
the majority of the computational time, but the sorting may be avoided by considering
a sufficiently small subset of the items known as the core. The core problem is a usual
knapsack problem defined on a small subset of the available items, where there is a high
probability of finding an optimal solution. A solution to the core problem is then used
as a lower bound in a reduction algorithm, which tries to fix decision variables at their
optimal values by applying some bounding rules. The remaining problem is finally solved

91

92 CHAPTER 6. CORE PROBLEMS IN KNAPSACK ALGORITHMS

exactly through enumeration.

Balas and Zemel [4] used an approximate algorithm for solving the core problem,
showing that the probability for the heuristic to find an optimal solution grows with the
size of the instance. The proof is based on the assumption that the weights w; in a core
are uniformly distributed, making it quite easy to obtain a filled knapsack by repeatedly
removing an item and replacing it with some others.

Martello and Toth [52] improved the algorithm by solving the core problem exactly
through branch-and-bound. The benefits are obvious: Generally a better solution is
found, thus making it possible to reduce more variables in the reduction part. If the
found solution reaches any upper bound for the Knapsack Problem, the algorithm may
even halt after having solved the core problem. In a comprehensive test, Martello and
Toth [53] demonstrate that their code MT2 is the best of the codes by Nauss [59], Fayard
and Plateau [24], and Martello and Toth [46,52].

However Pisinger [77] detected some situations where the variance of the weights in a
core is very small, contradicting the assumption by Balas and Zemel. This means, that it
may be very difficult to obtain a filled knapsack, and thus to obtain a good lower bound.
For the approximate algorithm by Balas and Zemel it means that the heuristic solution is
worse than expected, implying that less items may be fathomed in the reduction phase.
For MT2 — which solves the core problem to optimality — it may result in extremely
long computational times, since no good lower bound can be used to cut off branches of
the search tree.

In this chapter we prove that hard core problems are not the exception but rather the
rule, even for randomly generated data instances. This problem has not been noted before
due to inappropriate testing: In all experiments reported, the capacity ¢ was chosen as
half of the total weight sum, which results in very easy core problems. Therefore we will
here focus on how the hardness of a core problem depends on the capacity c.

We will consider the most common randomly generated data instances from the liter-
ature: Uncorrelated data instances: p; and w; are randomly distributed in [1, R]. Weakly
correlated data instances: w; randomly distributed in [1, R] and p,; randomly distributed
in [w; — R/10,w; + R/10] such that p; > 1. Strongly correlated data instances: w;
randomly distributed in [1, R] and p; = w; + 10. Subset-sum data instances: w,; ran-
domly distributed in [1, R] and p; = w;. The data range R will be tested with values
R =100, 1000 and 10 000.

This chapter is organized as follows: First we will define the core problem in Section
6.2, and describe which problems this may cause. Then a model for the expected hardness
of a core problem is proposed in Section 6.3, and it is demonstrated that the hitherto
applied method for testing algorithms is based on the easiest possible data instances. In
Section 6.4 we use the model developed for predicting the hardness of different large scale
data instances. Finally in Section 6.5, we will present a better way of generating test
instances, and use this method for testing different algorithms, which all solves some kind
of core problem.

6.2. DEFINITIONS 93

6.2 Definitions

The Binary Knapsack Problem is defined as the following optimization problem:
maximize 2z = ij:rj,
j=1

n

subject to Y w;z; <c, (6.1)
j=1
z;€{0,1}, j=1,...,n,

where p;, w; and c are positive integers. Without loss of generality we may assume that
all items fit into the knapsack, i.e. that

wj <c for j=1,...,n, (6.2)

and to avoid trivial problems we assume that >°7_; w; > c.

The Linear Knapsack Problem, which is defined by relaxing the integrality constraint
on z; in (6.1) to 0 < z; < 1, may be solved by using the greedy principle: Order the
items according to their efficiencies e; = p;/w, such that

e; > e; when i< j, (6.3)

and then include items 1,2, 3, ... as long as the next item fits into the knapsack. The first
item which does not fit into the knapsack is denoted the break item b, and we obtain the
LP-optimal solution by setting x; = 1,for j =1,...,b—1,and z; =0, for j = b+1,...,n,
while z; is set to

c— Y02] w,

Ty = (6.4)

Wh
Having found the break item, we may derive upper and lower bounds on the Knapsack
Problem, which again may be used for reducing the problem size (Ingargiola and Korsh
[38], Dembo and Hammer [14], Martello and Toth [52]). The reduced problem is then
solved exactly using enumerative techniques.

Balas and Zemel [4] noticed, that the sorting in (6.3) often takes up a majority of
the computational time, introducing the core problem as an efficient way of solving the
Knapsack Problem: Assume that the optimal solution was given in advance. Then we
could choose the core C' as an interval [,] of the sorted items, were « is the first item
where z, = 0 and § is the last item for which 25 = 1. The core problem — an ordinary
Knapsack Problem defined on the core C' — could then be solved in a common way, while
weset z;j =1forj=1,...,a—1landz;=0for j=6+1,...,n.

Obviously the core is not known in advance, but an approximate core may be found in
O(n) time (Balas and Zemel [4]) by partitioning the items in three sets H, C, L according
to their efficiencies, such that the break item is in the core C:

eiZGjZek, 1€ HjeCkel,

Z wj <c< Z w;. (65)

jeEH JEHUC

94 CHAPTER 6. CORE PROBLEMS IN KNAPSACK ALGORITHMS

Table I: Section of a difficult core. Uncorrelated instance, n = 30000, R = 100. The
break item is b = 14 with efficiency e, = 1.01064.

J | pj wi| €
92 91 | 1.01099
93 92 | 1.01087
93 92 | 1.01087
93 92 | 1.01087
93 92 | 1.01087
93 92 | 1.01087
93 92 | 1.01087
94 93 | 1.01075
95 94 | 1.01064
95 94 | 1.01064
95 94 | 1.01064
95 94 | 1.01064
95 94 | 1.01064
95 94 | 1.01064
96 95 | 1.01053
96 95 | 1.01053
97 96 | 1.01042
97 96 | 1.01042
98 97 | 1.01031
98 97 | 1.01031
98 97 | 1.01031
98 97 | 1.01031
98 97 | 1.01031

X O Ok W=

NN DN N o e = e e e e
W R OO~ UR WN RO ©

Since all items in the core will have similar efficiencies, the core problem basically consists
of finding an optimally filled knapsack. Assuming that the weights w; in the core are
randomly distributed, Balas and Zemel proved that a simple exchange-algorithm called
H (described in appendix A) will find a filled knapsack solution, with a probability that
grows with larger core size, and smaller data range. Moreover the probability that a filled
solution is an optimal solution, is growing as n is increased.

The size of the core should be chosen sufficiently large to find an optimal solution, but

also small enough to avoid unnecessary enumeration. Balas and Zemel [4] proposed the
size |C| = 50, while Martello and Toth [52] chose

n if n <100
Cl = . (6.6)
vn if n > 100.

Although solving the core problem means that a smaller problem is enumerated, it
does not necessarily mean that the problem is easier to solve (Pisinger [77]). Table I
shows a section of a difficult core: Although the profits and weights are randomly and
independently distributed in [1,100], the only items with efficiencies around e, = 1.01064
are pairs p; = w; + 1, where w; is close to 94. Evidently it is difficult to fill the knapsack

6.3. A MODEL FOR THE HARDNESS OF A CORE PROBLEM 95

if the capacity is not close to a multiple of 94. Since the core is of fixed size, no lighter
items from outsides the core may be included, although they fit exactly into the residual
capacity.

According to Balas and Zemel [4], this core problem should be easy to solve, since
the profits and weights of the original problem are randomly distributed independently
on each other. Moreover the data-range R is relatively small, and the size n is large. But
what we see here is a degeneration of the core, which Balas and Zemel did not take into
account.

6.3 A model for the hardness of a core problem

Essentially the core problem consists of finding a filled knapsack, since the uniformity of
the efficiencies implies that a filled solution generally also is an optimal solution. But the
ability to obtain a given weight sum c clearly depends on two properties of the affected
items: How well the weights in (' are spread out across the range R, as well as the average
weight of the items in C'. Light items may easily fill the empty gap in a knapsack, and
if the weights are equally scattered, almost any capacity ¢ may be obtained. Thus the
expected hardness H of the core problem may be defined as

H =wy, (6.7)

where W is the average weight of the core items, and x is a measure of the clustering. The
average weight of the items in C is

1
C

w =

> wj, (6.8)

jec

while the clustering of the items is found by dividing the data range R in 10 equally sized
intervals I;, with NV; being the number of items j € C' where w; € I;. The x* (chi-square)
value is a common test for the scatteredness of some values. It is found as the squared
distance of N; from the expected frequency u = |C|/10, scaled by p. Thus as a measure
for the clustering of the weights we may use x given by

_ Ezlgl(Ni — p)?
X = \} . . (6.9)

This model conforms with Proposition 6.1 by Balas and Zemel (see appendix A), since if
the weights are homogeneously scattered in a small interval [1, R] (meaning that both x
and w = R/2 are small), the heuristic H easily will find a filled solution.

As an example we will consider a weakly correlated data instance with 3000 items,
and data range R = 100. The core size is chosen as |C| = 50, and we monitor the
average weight and clustering as a function of the knapsack capacity c. To smooth out
the stochastic variation of each instance, we give the average values for 500 different
data instances. In Figure 6.1 the average weight w of the core is shown when varying

96 CHAPTER 6. CORE PROBLEMS IN KNAPSACK ALGORITHMS

100 +

50 T .o'... *®

: : : : : : : : : —
10% 100%

Figure 6.1: Average weight w of core as function of the capacity c. Average of 500 weakly
correlated instances, n = 3000, R = 100.

20 +

10 __...... o®® * L]

10% 100%
Figure 6.2: Clustering x of core as function of the capacity c. Average of 500 weakly

correlated instances, n = 3000, R = 100.

the knapsack capacity from 1% to 99% of the total weight sum. Figure 6.2 gives the
corresponding y-value of each core.

To test the theory that H = wy, we show the expected core hardness in Figure 6.3
and compare it to the quality of solutions found by heuristic H, measured as the residual
capacity of the best filling (Figure 6.4). If heuristic H is able to find a filled solution and
thus a good lower bound, obviously the core problem will be easy to solve (and vice versa).
Both figures show the average values of the same 500 data instances for each percentage
of the capacity. It is seen, that the two figures have the same characteristics, supporting
the correctness of our model.

Finally we compare the expected core hardness with the actual running times of the
MT2 algorithm in Figure 6.5. MT2 solves the core problem to optimality, using a consid-
erable amount of the solution time for this step. The same instances are considered as
before. Due to the exponential growth of computing times, we use a logarithmic scale. It
is seen, that actual running times conform with the expected core hardness.

However the model (6.7) should be taken with some caution. Data instances may
easily be constructed such that there is a small average weight and clustering, although
the instances are very hard to solve. As an example choose the items as

pj=w; =24, j=1,...,50, (6.10)

and assume that c is odd. The y-value of this core is zero meaning that the expected core
hardness is H = 0. Still any branch-and-bound algorithm will have to enumerate all 2°°
variations of the solution vector, since no bounding stops the process, as mentioned by
Jeroslow [40]. However for randomly generated data instances, the model is very suitable,
giving a good estimate of the expected core hardness. But the expected core hardness

6.4. EXPECTED CORE HARDNESS 97

1000 +

200 +

10% 100%
Figure 6.3: Expected core hardness H of problem as function of the capacity c. Weakly

correlated instances, n = 3000, R = 100.

20 +

10% 100%
Figure 6.4: Average residual capacity for heuristic H, as function of the capacity c.

Weakly correlated instances, n = 3000, R = 100.

o
o
o
to
B
.
.
[
.
.
.
i3
—*
o
.
3
3
Y
o

only reflects the actual running times for a large series of instances. Single runs may be
solved very fast if the items exactly fit into the capacity.

6.4 Expected core hardness

We will now apply the model developed for predicting computational times of very large
data instances as a function of the capacity. These instances are so hard, that we cannot
make a direct comparison like between Figure 6.3 and 6.5, since solution times of several
days occur for many instances, when solved by MT2.

Figures 6.6 to 6.13 give the expected core hardness for uncorrelated, weakly correlated,
strongly correlated, and subset-sum data instances as a function of the capacity c¢. In

100 +

10° +

107+ T . W T -

10_2 __..o... o .. .O.o...o....
I I I I I I I I : : c

10%

Figure 6.5: Average computational times for MT2 in seconds (logarithmic scale), as func-

tion of the capacity c. Weakly correlated instances, n = 3000, R = 100.

98 CHAPTER 6. CORE PROBLEMS IN KNAPSACK ALGORITHMS

1500+
1000 +
D00 et e ettt e e st snsasateteaatete st aanetasssssen st renes®®
| | | : : : : : : : c
10% 100%
Figure 6.6: Expected core hardness, uncorrelated instances, n = 10000, R = 100.
2000+
1500 +
1000 +
500+
| | | : : : : : : c
10% 100%
Figure 6.7: Expected core hardness, weakly correlated instances, n = 10000, R = 100.
2500+
20001 e
.
10004 e s

5004 o

: : : : : : : : : > C
10% 100%
Figure 6.8: Expected core hardness, strongly correlated instances, n = 10000, R = 100.
1500+
1000+
500+
: : : : : : : : : — C
10% 100%

Figure 6.9: Expected core hardness, subset-sum instances, n = 10 000, R = 100.

6.4. EXPECTED CORE HARDNESS

1500 +
1000 +

99

10%

f f f f f f &

100%

Figure 6.10: Expected core hardness, uncorrelated instances, n = 100000, R = 100.

2000 +
1500 +
1000 +

5001

10%

: : : : : - C

100%

Figure 6.11: Expected core hardness, weakly correlated instances, n = 100 000, R = 100.

2500+
2000 +
1500 +
1000 +

5004 o

10%

—- C

100%

Figure 6.12: Expected core hardness, strongly correlated instances, n = 100 000, R = 100.

1500 +

1000 +

200+

10%

—= C

100%

Figure 6.13: Expected core hardness, subset-sum instances, n = 100 000, R = 100.

100 CHAPTER 6. CORE PROBLEMS IN KNAPSACK ALGORITHMS

figures 6.6 to 6.9 we consider instances of size n = 10000 while figures 6.10 to 6.13
consider instances with n = 100000. All figures are based on the data range R = 100.

To start with the weakly correlated data instances (Figure 6.7, 6.11), it is seen that
the easiest instances occur for ¢ chosen as half of the weight sum, while almost any other
instances are very hard. The minimum at ¢ = 50% is due to a core of items with efficiencies
e; = 1, meaning that there is no clustering of the involved weights.

The uncorrelated data instances (Figure 6.6, 6.10) are considerably easier than the
weakly correlated instances. A peak at ¢ = 35% is noticed, but it is of much lower extent
than in the weakly correlated instances. Again this peak is around efficiencies e; = 1. As
the size of the data instance grow to n = 100 000 the graph gets more turbulent, meaning
that it is very difficult to predict the running times.

Strongly correlated instances (Figure 6.8, 6.12) are very hard, as noticed by Balas and
Zemel [4] and Martello and Toth [52]. The core hardness grows with the capacity, as
the average weight of the core increases. The peaks at the graph are noise due to the
division of R in 10 intervals I; when deriving x. The core hardness grows smoothly with
the capacity.

Finally the subset-sum data instances (Figure 6.9, 6.13) are very easy for any capacity
chosen. This could be expected, since there is no clustering at all: The core hardness only
depends of the average weight of an instance.

We may draw several conclusions from these observations:

e For algorithms solving a core problem, the difficulty of a data instance is highly
dependent on the capacity c¢. Traditionally only the correlation and data size was
varied in computational experiments, while the capacity was fixed at half of the
weight sum (Balas and Zemel [4], Martello and Toth [52], Pisinger [75,82]). Fayard
and Plateau [24] are using capacities ¢ = 20%, 50%, 80% for their testings, but none
of these values are representative for the hardness of a problem.

e If the capacity is chosen as half of the weight sum, we end up with the easiest
possible data instances for all weakly correlated instances. Thus the comprehensive
comparative tests in Martello and Toth [53] are of little use. We cannot draw any
conclusions from these tests.

e Balas and Zemel [4] proves that the heuristic H for solving the core problem finds an
optimal solution with a probability that grows with increasing n and decreasing R
(Appendix A). Thus for uncorrelated data instances of size n = 100000 and range
R = 100 we should have a probability larger than 0.9999 for finding an optimal
solution. However the results presented here indicate that large problems with small
data range will have an extremely high clustering of the weights, contradicting the
assumption by Balas and Zemel saying that the weights in the core are uniformly
distributed. Thus we should not expect to find good solutions by using a heuristic
algorithm for solving the core problem. Balas and Zemel do not recognize this
problem, since their tests are based on problems with ¢ = 50%.

e We may explain the turbulent behavior of MT2 for weakly correlated problems, when
¢ = 50%, as reported by Martello and Toth [53] and Pisinger [75,77]: The partition-

6.5. NEW METHOD FOR TESTING ALGORITHM 101

ing algorithm for finding the approximate core finds a core which is not necessarily
symmetrical around b. Very asymmetrical cores end up in difficult instances, since
the peak around ¢ = 50% is so narrow.

e The presented observations are also valid for other types of Knapsack Problems
like the Bounded Knapsack Problem, or Multiple Knapsack Problem. Thus testing
with capacity ¢ = 50% should be avoided for these problems in order to evade trivial
problems.

All the presented graphs have been given for the data range R = 100. Similar results hold
for R = 1000 or R = 10000, although the instances must be 10 (resp. 100) times lager to
obtain the same y-value. The expected core hardnesses H for different data ranges are not
directly comparable: They should merely be taken as an indication of which capacities
may cause problems, than as absolute running times.

6.5 New method for testing algorithm

In order to test algorithms for the Knapsack Problem more thoroughly, we propose a new
way of constructing test instances. First we notice that due to the stochastic nature of
the Knapsack Problem, the applied series of test instances should be large — much larger
than the previously used 10 or 20 instances (Balas and Zemel [4], Martello and Toth [53],
Pisinger [68]). Thus we propose series of S = 1000 instances for each type of problem.
Moreover the capacity should be uniformly scattered among the possible weight sums,
so that the capacity-dependent behavior is annihilated. For test instance ¢ we choose the
capacity as
,L' n
c= S+1§;w3’ (6.11)

meaning that a variety of different capacities are tested as 7 runs from 1 to S. Finally
the test instances should be reproducible by other authors. The applied algorithm for
generating test instances is thus given in appendix B, with some checksums on the optimal
solutions.

We consider four different algorithms for solving the Knapsack Problem. Although
they are all based on solving a core problem exactly, they differ essentially in several
respects. The FPK79 algorithm by Fayard and Plateau [24] is based on a heuristic solution
of the core problem, while the MT2 algorithm by Martello and Toth [53] solves a core
problem of fixed size to optimality through branch-and-bound. The EXPKNAP algorithm
[75] is using a depth-first branch-and-bound algorithm for solving the core problem like
MT2, but the core is expanded by need, as the branching propagates. Finally the MINKNAP
algorithm [82] is using dynamic programming for solving an expanding core. Since the
breadth-first search ensures that all variations of the solution vector corresponding to the
core have been tested before a new item is included in the core, this algorithm enumerates
the smallest possible core.

The codes used are obtained from the mentioned references. Algorithm FPK79 had to
be corrected a few places, since the reduction part of the code was wrong. The code by

102 CHAPTER 6. CORE PROBLEMS IN KNAPSACK ALGORITHMS
Table II: Total computing time in seconds, FPK79. Average of 1000 instances.
Uncorrelated Weakly correlated Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 | 0.00 0.00 0.00 | 0.00 0.00 0.00 | 28.78 28.13 56.02 | 0.00 0.00 0.01
300 | 0.00 0.00 0.00 | 0.00 0.00 0.00 — — — [0.01 0.01 0.02
1000 | 0.00 0.00 0.00 | 0.08 0.00 0.01 — — — | 0.06 0.08 0.11
3000 | 0.01 0.01 0.01 — 0.01 0.01 — — — | 049 0.62 0.86
10000 | 0.50 0.03 0.04 — 0.16 0.05 — — — | 5.26 5.68 8.08
30000 — 0.10 0.11 — — 0.14 — — — — — —
100000 — 047 0.42 — — 3.01 — — — — — —
Table III: Total computing time in seconds, MT2. Average of 1000 instances.
Uncorrelated Weakly correlated Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 | 0.00 0.00 0.00 | 0.00 0.00 0.00 | 8.07 831 16.24 | 0.00 0.00 0.01
300 | 0.00 0.00 0.00 | 0.00 0.00 0.01 — — — | 0.00 0.00 0.02
1000 | 0.00 0.00 0.01 | 0.00 0.01 0.02 — — — 1 0.00 0.00 0.02
3000 | 0.00 0.01 0.02 | 0.07 0.01 0.06 — — — 1 0.00 0.00 0.02
10000 | 0.02 0.03 0.06 — 0.02 0.14 — — — [0.01 0.01 0.03
30000 — 0.06 0.17 — 0.19 0.23 — — — | 0.03 0.03 0.05
100000 — 0.27 0.52 — — 0.44 — — — 1 0.12 0.13 0.14

Table IV: Total computing time in seconds, EXPKNAP. Average of 1000 instances.

Uncorrelated Weakly correlated Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 | 0.00 0.00 0.00 | 0.00 0.00 0.00 | 42.21 45.14 126.66 | 0.00 0.00 0.02
300 | 0.00 0.00 0.00 | 0.00 0.01 0.01 — — — | 0.00 0.00 0.02
1000 | 0.00 0.00 0.01 | 0.00 0.02 0.06 — — — | 0.00 0.00 0.02
3000 | 0.00 0.01 0.02 | 0.00 0.01 0.25 — — — | 0.00 0.00 0.03
10000 | 0.01 0.03 0.11 | 0.01 0.02 0.65 — — — 1 0.01 0.01 0.05
30000 | 0.04 0.06 0.39 | 0.04 0.05 0.63 — — — 1 0.04 0.04 0.05
100000 | 0.17 0.19 0.91 | 0.17 0.18 0.39 — — — 1 0.15 0.15 0.15

Table V: Total computing time in seconds,

MINKNAP. Average of 1000 instances.

Uncorrelated Weakly correlated Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 [100 1000 10000 | 100 1000 10000
100 | 0.00 0.00 0.00 | 0.00 0.00 0.00 | 0.00 0.03 0.25 | 0.00 0.00 0.05
300 | 0.00 0.00 0.00 | 0.00 0.00 0.00 | 0.01 0.14 1.44 | 0.00 0.00 0.05
1000 | 0.00 0.00 0.00 | 0.00 0.00 0.01 | 0.06 0.61 7.43 | 0.00 0.01 0.05
3000 | 0.00 0.01 0.01 | 0.00 0.01 0.03 | 0.22 2.33 29.10 | 0.00 0.01 0.06
10000 | 0.01 0.01 0.02 | 0.01 0.01 0.05 | 1.00 10.47 125.12 | 0.01 0.01 0.06
30000 | 0.03 0.03 0.06 | 0.04 0.04 0.07 | 3.22 38.04 464.26 | 0.03 0.03 0.08
100000 | 0.10 0.10 0.16 | 0.15 0.14 0.15 | 14.22 152.51 1756.78 | 0.11 0.12 0.16

6.6. CONCLUSIONS 103

Balas and Zemel [4] was not available for this test.

Table II to V gives the total running times for the four algorithms on a HP-9000/730
computer. The instances marked with a “—” were stopped after 10 hours, when there
did not seem to be any progress in the solution process.

It is seen, that FPK79 and MT2 have substantial problems for all low-ranged weakly
correlated instances of medium and large size. Also some low-ranged uncorrelated in-
stances cause problems. On the other hand both EXPKNAP and MINKNAP show a stable
behavior, with all running times within one second (the strongly correlated instances
excepted). Only MINKNAP is able to solve large strongly correlated instances.

It is interesting to note that although MT2 and EXPKNAP both are using depth-first
branch-and-bound techniques, EXPKNAP is not sensitive to the difficulty of the core, since
the core is expanded by need. The MINKNAP algorithm is using dynamic programming
for solving the core, so it is not sensitive to clustered weights: equal states are simply
fathomed through a dominance test.

The last table (Table VI) gives the percentage of tested items by the reduction al-
gorithm of MINKNAP. Since this reduction is performed by need, the values of Table VI
indicates how many items need to be considered in order to solve the problem. If the
percentage is low, then the problem is well suited for solving a core problem, while high
percentages means that you have to reduce almost all items anyway, implying that a
heuristic solution to the core problem may be more suitable (Pisinger [77]).

If Table VI is compared to the running times of MT2, it is seen that MT2 is performing
worst, when most effort could be saved. The stable running times of MT2 are for instances
where solving a core problem is almost useless. Thus we may conclude, that solving a core
problem of fixed size generally makes the instance harder to solve than using a complete
reduction followed by enumeration of the remaining instance.

6.6 Conclusions

We have seen that the core hardness of a data instance depends strongly on the capacity
¢, and that the hitherto applied test capacities lead to the easiest possible problems for
weakly correlated data instances. Solving a core problem exactly may lead to seriously
worse running times than if a more naive technique was used, but these problems may be

Table VI: Percentage of items, which were tested by the reduction algorithm of MINKNAP.
Average of 1000 instances.

Uncorrelated Weakly correlated | Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 | 74 89 92 | 64 97 99 | &4 89 94 | 24 32 38
300 | 54 85 90 | 25 94 98 | 83 85 89 | 10 13 16
1000 | 19 79 88 6 76 97 | &4 86 87 4 5 6
3000 3 66 86 3 33 95 | &5 85 86 2 2 2
10000 1 31 84 1 5 85 | 88 86 86 1 1 1
30000 0 7 72 1 1 48 | 87 86 88 0 0 0
100000 0 1 51 0 0 11| 84 85 84 0 0 0

104 CHAPTER 6. CORE PROBLEMS IN KNAPSACK ALGORITHMS

avoided by using an expanding core, or through dynamic programming. Finally a new and
more thorough way of testing Knapsack Problems has been proposed. The technique has
been used for four algorithms — all based on a core problem — showing that EXPKNAP
and MINKNAP are the only algorithms which have a stable behavior.

Appendix A: Heuristic H

Heuristic H by Balas and Zemel [4] is a simple exchange algorithm for the core problem,
which successively removes an item % and replaces it by one or two other items 7,0 in
order to obtain a filled knapsack. In spite of the simple structure, Balas and Zemel are
able to prove some interesting properties on the quality of the solution found by heuristic
H.

Assume that the core items are indexed by 1,...,m, and that the capacity of the core
problem is ¢. The break item in the core is denoted b, and the residual capacity by filling
the knapsack with items j < bisr = ¢ — Z?;} w;. Define the extreme core weights as
MIN = minj—;,__, w; and MAX = max,-1,., w;. Heuristic H may then be sketched as:

procedure H; { Find the packing, which fills the knapsack most }
for i:=1to b—1do z; := 1; rof;
for i := b to m do z; := 0; rof;
d := r; { d is the hitherto smallest obtained residual capacity }
fori:=1tob—1do
x; :=0; T :=r+ w;; { Remove item i and eventually insert item b}
if (7 > MAX) then z, :==1; 7:=7 — wy; fi;
for j:=b+1to m do
zj:=1; T:=7—w;; {Insert an item j }
if (0 <7 < d) then d :=T; Save the solution. fi;
z; =0
rof;
zi=1; xp:=0;
rof

Balas and Zemel shows the following results for heuristic H: Let Vj; = MAX — MIN + 1 be
the span in the weights, and let V; be the number of items 7 = 1,...,b— 1 satisfying that
MIN < 7 < MAX. Further assume that the weights w; are independent random variables
uniformly distributed in [MIN, MAX].

Proposition 6.1 The probability P that the heuristic H finds a filled solution (i.e. a
solution with residual capacity 7 = 0) is

m—b
P:l—(l—%) . (6.12)

See [4] for a proof. The interesting consequence of Proposition 6.1 is that under reasonable
assumptions, the probability for finding a filled knapsack grows exponentially with the

6.6. CONCLUSIONS 105

Table VII: Probability P for obtaining a filled solution by heuristic H, as function of V;
and m — b. The probabilities are for V; = 100 corresponding to data range R = 100.
m-—b>b

Vil 10 20 30 50
10 | 0.65 0.88 0.96 0.986
151 0.80 0.97 0.993 0.999
201 0.89 0.99 0.999 0.999

core size m, and increases with smaller data-range R since V5 < R. Table VII gives the
expected probability for finding a filled solution by algorithm H. The Table is obtained
from [4].

Proposition 6.2 The probability for a filled solution found by heuristic H being an
optimal solution to the Knapsack Problem is bounded below by a strictly increasing
function Q(n) satisfying that

lim Q(n) = 1. (6.13)

n—oQ
Thus the probability for a filled solution obtained by heuristic H being an optimal solution
grows with the size n of the instance.
However the results presented in this chapter indicate that Proposition 6.1 and 6.2 are
of little use, even for uncorrelated data instances of large size. The problem is, that for
large instances the core may degenerate, implying that V; becomes close to zero. Heuristic

H is thus not able to find a filled solution, although it would be optimal for the global
problem.

Appendix B: Generating test data

In order to let other authors generate the same test instances as applied in section 6.5,
we here include an algorithm for generating the test data.

The standard LRAND48 generator of the C library is used for generating pseudo-
random profits and weights. The LRAND48 generator is using the well-known linear
congruential algorithm, which generates a series of numbers X7, Xy, X3,... as

X1 = (aX; + d) mod m, (6.14)

where a = 25214903917, d = 11 and m = 2%8. The first 31 bits of the number are returned
for LRAND48. A seed s for the algorithm is given by procedure SRAND4S as:

X, = s-2'% 4+ 13070. (6.15)

For a given data range R, instance size n, and problem type ¢ (uc, we, sc, ss) we con-
structed S = 1000 different data instances as follows:

106 CHAPTER 6. CORE PROBLEMS IN KNAPSACK ALGORITHMS

Table VIII: Checksums for optimal solutions given as 33, z; mod 1000.

Uncorrelated Weakly correlated | Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 | 283 67 410 | 505 591 257 | 348 202 681 | 391 111 897
300 | 717 402 272 | 333 188 717 | 481 45 443 | 952 924 381
1000 | 802 589 48 | 895 956 850 | 961 129 307 | 461 873 939
3000 | 932 320 780 | 193 942 146 | 415 225 718 | 545 265 342
10000 | 737 590 269 | 577 328 398 | 847 210 370 | 167 160 940
30000 | 689 846 820 | 794 153 117 | 507 361 320 | 457 801 490
100000 | 926 85 646 | 749 471 136 | 186 956 242 | 606 366 292

procedure testinstance(n, R, t,1); { Generate test instance i, 1 <17 < S}
W :=0; R := |R/10]; sRAND48(i); { Use i as seed for the sequence of random numbers }
for j:=1tondo
wj := (LRAND48 mod R) +1; W :=W + wj;
case t of
uc: p; = (LRAND48 mod R) + 1;
we: pji= w; — R’ 4+ (LRAND48 mod (2R' +1));
if (p; <0) then p; :=1; fi;
sc: pj = w; + 10;
S8: Pj = Wy;
esac;
rof;
c:=[([ExW)/(S+1)];
if (¢ < R) then c:= R+ 1; fi;

The if -statement in weakly correlated instances ensures that p; is a positive integer, while
the last line of the algorithm ensures that equation (6.2) is satisfied. Checksums of the
optimal solutions and capacities are given in Table VIII and IX.

An interesting problem to investigate further is the instance n = 100000, R = 10 000,
t = uc, S = 500 and s = 157. Here MT2 finds the solution 323792911 while EXPKNAP
and MINKNAP both finds the solution 323792912.

Table IX: Checksums for applied capacities given as 37 ; ¢; mod 1000.

Uncorrelated Weakly correlated | Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 | 208 739 745 | 208 739 745 | 391 128 903 | 391 128 903
300 | 692 620 220 | 692 620 220 | 952 924 381 | 952 924 381
1000 | 653 696 125 | 653 696 125 | 461 873 939 | 461 873 939
3000 | 679 793 42 | 679 793 42 | 545 265 342 | 545 265 342
10000 | 32 850 127 | 32 850 127 | 167 160 940 | 167 160 940
30000 | 417 468 111 | 417 468 111 | 457 801 490 | 457 801 490
100000 | 933 384 858 | 933 384 858 | 606 366 292 | 606 366 292

Chapter 7

A Minimal Algorithm for the
Multiple-choice Knapsack Problem

The Multiple-Choice Knapsack Problem is defined as a 0-1 Knapsack Problem
with the addition of disjoined multiple-choice constraints. As for other knapsack
problems most of the computational effort in the solution of these problems is used
for sorting and reduction. But although O(n) algorithms, which solve the linear
Multiple-Choice Knapsack Problem without sorting, have been known for more than
a decade, such techniques have not been used in enumerative algorithms.

In this chapter we present a simple O(n) partitioning algorithm for deriving
the optimal linear solution, and show how it may be incorporated in a dynamic
programming algorithm such that a minimal number of classes are enumerated,
sorted and reduced. Computational experiments indicate that this approach leads
to a very efficient algorithm which outperforms any known algorithm for the problem.
Keywords: Knapsack Problem; Dynamic Programming; Reduction.

7.1 Introduction

Given k classes Ni,..., N, of items to pack in some knapsack of capacity c. Each item
J € N; has a profit p;; and a weight w;;, and the problem is to choose one item from each
class such that the profit sum is maximized without having the weight sum to exceed c.
The Multiple-Choice Knapsack Problem (MCKP) may thus be formulated as:

k
maximize 2z = Z Z DijTij

i=1jEN;
k
subject to Z Z w;Tij < ¢, (7.1)
i=1jEN;
Z.’L’Z’jzl, izl,...,k,
JEN;

.’EUE{O,l}, 1=1,...,k, j€N,.

All coefficients p;;, w;;, and c are positive integers, and the classes Ny, ..., Ni are mutually
disjoint, class N; having size n;. The total number of items is n = %, n,.

107

108 CHAPTER 7. A MINIMAL ALGORITHM FOR THE MULTIPLE-CHOICE KP

Negative coefficients p;;, w;; in (7.1) may be handled by adding a sufficiently large
constant to all items in the corresponding class as well as to c. To avoid unsolvable or
trivial situations we assume that

meww < ¢ < Zmaxw” (72)

If we relax the integrality constraint z;; € {0,1} in (7.1) to 0 < =z;; < 1 we obtain
the Linear Multiple-Choice Knapsack Problem (LMCKP). If each class has two items,
where (p;1,w;1) = (0,0), i =1,...,k, the problem (7.1) corresponds to the 0-1 Knapsack
Problem (KP). The linear version of KP will be denoted by LKP.

MCKP is NP-hard as it contains KP as a special case, but it can be solved in pseudo-
polynomial time through dynamic programming (Dudzinski and Walukiewicz [20]). The
problem has a large range of applications: Capital Budgeting (Nauss [60]), Menu Planning
(Sinha and Zoltners [90]), transforming nonlinear KP to MCKP (Nauss [60]), determining
which components should be linked in series in order to maximize fault tolerance (Sinha
and Zoltners [90]), and to accelerate ordinary LP/GUB problems by the dual simplex
algorithm (Witzgal [94]). Moreover MCKP appear by Lagrange relaxation of several
integer programming problems (Fisher [27]).

Several algorithms for MCKP have been presented during the last two decades: e.g.
Nauss [60], Sinha and Zoltners [90], and Dyer, Kayal and Walker [22]. Most of these
algorithms start by solving LMCKP in order to obtain an upper bound for the problem.
The LMCKP is solved in two steps: 1) The LP-dominated items are reduced by sorting the
items in each class according to nondecreasing weights, and then applying some dominance
criteria to delete unpromising states. 2) The reduced LMCKP is solved by a greedy
algorithm. After these two initial steps, upper bound tests may be used to fix several
variables in each class to their optimal value. The reduced MCKP problem is then solved
to optimality through enumeration (Dudzinski and Walukiewicz [20]).

Essential results in the field of KP however indicates that MCKP may be solved easier:
Balas and Zemel [4] independently with Fayard and Plateau [23] proposed to consider only
a small subset of the items — the so-called core — in order to solve KP. A core can be
found in O(n) time through a partitioning algorithm, and since the restricted KP defined
on the core items is easy to solve for several classes of data instances, it means that many
instances may be solved in linear time (Martello and Toth [52], Pisinger [75]). However if
optimality of the core solution cannot be proved, a complete enumeration including the
variables outside the core has to be performed.

Although O(n) algorithms for LMCKP have been known for a decade (Zemel [96],
Dyer [21]), making it possible to derive a “core” reasonably easy, a similar technique has
not been used for MCKP. According to Martello and Toth [53] this may be caused by the
fact that reduction of LP-dominated items is necessary in order to derive upper bounds
in a branch-and-bound algorithm. The current chapter however demonstrates that a core
algorithm for MCKP is possible, although several questions had to be answered: Which
items or classes should be included in the core? How should we derive upper bounds in
a branch-and-bound algorithm when LP-dominated items have not been deleted? How
should a core be derived? How should a primal algorithm for LMCKP be developed?

7.2. FUNDAMENTAL PROPERTIES 109

The present chapter is a counterpart to a minimal algorithm for KP by Pisinger [82]: A
simple algorithm is used for solving LMCKP, and for deriving an initial feasible solution to
MCKP. Starting from this initial solution we use dynamic programming to solve MCKP,
adding new classes to the core by need. By this technique we are able to show that a
minimal number of classes are considered in order to solve MCKP to optimality.

The chapter is organized in the following way: First, Section 7.2 brings some basic
definitions, and shows fundamental properties of MCKP, while Section 7.3 presents a
simple partitioning algorithm for the solution of LMCKP. Next, Section 7.4 shows how
gradients may be used in an expanding-core, as well as presenting some logical tests which
may be used to fix variables at their optimal value, before a class is added to the core.
Section 7.5 gives a description of the dynamic programming algorithm, and Section 7.6
shows how we keep track on the solution vector in dynamic programming. Finally Section
7.7 presents the main algorithm and discuss minimality of the derived core, while Section
7.8 brings computational experiments.

7.2 Fundamental properties

Definition 7.1 If two items r and s in the same class /N; satisfy that
Wiy S Wis and Dir Z Dis, (73)

then we say that item r dominates item s. Similarly if some items r,s,¢ € N; with
Wwir < Wis < wip and pi < pis < py satisty

det(wis — Wir, Pis — Dir, Wit — Wir, Pit — Pir) < 0, (7.4)
then we say that item s is LP-dominated by items r and t.

Proposition 7.1 (Sinha and Zoltners [90]) Given two items r, s € N;. If item r dominates
item s then an optimal solution to MCKP with z;; = 0 exists. If two items r,t € N; LP-
dominate an item s € N; then an optimal solution to LMCKP with z;; = 0 exists.

As a consequence, we only have to consider LP-undominated items R; in the solution
of LMCKP. Note that these items form the upper convex boundary of the set N;, as

> W

Figure 7.1: LP-undominated items R; (black) form the upper convex boundary of N;.

110 CHAPTER 7. A MINIMAL ALGORITHM FOR THE MULTIPLE-CHOICE KP

illustrated in Figure 7.1. The set of LP-undominated items may be found by ordering
the items in each class N; according to increasing weights, and successively test the items
according to criteria (7.3) and (7.4). If two items have the same weight and profit, choose
an arbitrary of them. Now LMCKP may be solved by using the greedy algorithm:

Algorithm 7.1 Greedy.

1 Find the LP-undominated classes R; (ordered by increasing weights) for all classes
Ni,i=1,...,k. Choose the lightest item from each class (i.e. set z;; =1, z;; =0
for j = 2,...,|R;|], i = 1,...,k) and define the chosen weight and profit sum as
W = Ele w;1, resp. P = Zle pi1- For all items j # 1 define the slope A;; as

Ny = DETPuoV gk j=2,. IR (7.5)
Wij — Wi,j-1
This slope is a measure of the profit-to-weight ratio obtained by choosing item j
instead of item j — 1 in class R; (Zemel [95]). Using the greedy principle, order the
slopes {)\;;} in nondecreasing order.

2 Let i, j be the indices corresponding to the next slope A;; in {\;;}. If W+w;; > ¢ goto
Step 3. Otherwise set z;; = 1, x; ;_1 = 0 and update the sums W = W +w;; —w; j_1,
P = P+ p;; — pij—1- Repeat Step 2.

3 If W = ¢ we have an integer solution and the optimal objective value to LMCKP
(and MCKP) is z* = P. Otherwise let \;; be the next slope in the list. We have two
fractional variables z;; = ch__iufvj_l respectivly z; j_1 = 1 — x;;, which both belong
to the same class. The optimal objective value is

Although several orderings of {);;} exist in Step 1 when more items have the same slope,
we will assume that one specific ordering has been chosen.

The LP-optimal choices b; obtained by Algorithm 7.1 are those variables, where z;,, =
1. The class containing two fractional variables in Step 3 will be denoted the fractional
class N,, and the fractional variables are Tq,, Ty possibly with x,y = 0. An initial
feasible solution to MCKP may be constructed by choosing the LP-optimal variables, i.e.
setting x;, = 1 fori=1,...,kand z;; =0for ¢ =1,...,k, j # b;. The solution will be
denoted the break solution and the corresponding weight and profit sum is W resp. P.

Proposition 7.2 As a consequence of Algorithm 7.1 an optimal solution x* to LMCKP
satisfies the following: 1) z* has at most two fractional variables zq, and zay . 2) If 2*
has two fractional variables they must be adjacent variables within the same class N,. 3)
If z* has no fractional variables, then the break solution is an optimal solution to MCKP.

The presented greedy algorithm has time complexity O(nlogn) due to the ordering of
slopes. It should be mentioned, that when the classes form a KP, Algorithm 7.1 is exactly
the greedy algorithm for LKP, and the objective value (7.6) corresponds to the Dantzig
upper bound for KP (Dantzig [13]).

7.2. FUNDAMENTAL PROPERTIES 111

> W

Figure 7.2: Gradients A\, \; in class ;.

An optimal solution to MCKP generally corresponds to the break solution, except for
some few classes where other items than the LP-optimal choices have been chosen. This
property may be illustrated the following way: Define the positive and negative gradient
A and A; for each class N, i # a as (see Figure 7.2)

Dij — Dib;

o= max =~ 4B 1k i#a, 7.7
¢ JEN:, wij>win, Wij — Wip, 7& ()
A = min 2% TPY Gk ita, (7.8)

JEN:, wij<wip; Wsp, — Wij

and we set] = 0 (resp. \; = 00) if the set we are maximizing (resp. minimizing) over
is empty. Note that the above definitions do not demand any preprocessing of the items.
The gradients are a measure of the expected gain (resp. loss) per weight unit by choosing
a heavier (resp. lighter) item from N; instead of the LP-optimal choice b;. The gradient
of the fractional class N, is defined as

) = Pabh ™ Pab. (7.9)

w(}bbﬁL — Wap,

In Figure 7.3 we have ordered the classes according to decreasing \; and show how
often the IP-optimal solution to MCKP differs from the LP-optimal choice in each class

/\ZT" b % differences

1.0125

class NV;

Figure 7.3: Frequency of classes N; where IP-optimal choice differs from LP-optimal
choice, compared to gradient \;".

112 CHAPTER 7. A MINIMAL ALGORITHM FOR THE MULTIPLE-CHOICE KP

A 1 % differences

2

1.0

0.2 15
~ frequency

10

class V;

Figure 7.4: Frequency of classes N; where IP-optimal choice differs from LP-optimal
choice, compared to gradient A; .

N;. The figure is a result of 5000 randomly generated data instances (k = 100, n; = 10),
where we have measured how often the IP-optimal choice j (satisfying w;; > wj, since we
are considering forward gradients) differs from the LP-optimal choice b; in each class N;.
It is seen, that when)] is decreasing, so is the probability that b; is not the IP-optimal
choice. Similarly in Figure 7.4 we have ordered the classes according to increasing A; to
show how the probability for changes decreases with increased A; .

This observation motivates considering only a small number of the classes N;, namely
those classes where A\ or \; are sufficiently close to A\. Thus at any stage the core is
simply a set of classes {N,,,..., N, } where ri,...,7, € {1,...,k}. Initially the core
consists of the break set N, and we expand the core by need; alternately including the
next unused class N; which has largest A" or smallest A; .

Since a complete enumeration of the core demands considering up to n,, - n,, ---n,,,
states, care should be taken before including a new class to the core. We use an upper
bound test to fix as many variables at their optimal value as possible in the class before it
is included in the core. If only one item remains, the class may be fathomed. Otherwise
we order the remaining variables by nondecreasing weight and use test (7.3) to delete
dominated items. The remaining class is added to the core and the new choices are
enumerated through dynamic programming.

7.3 A partitioning algorithm for the LM CKP

Dyer [21] and Zemel [96] independently of each other developed O(n) algorithms for
LMCKP. Both algorithms are based on the convexity of the LP-dual problem to (7.1),
which makes it possible to pair the dual line segments, so that at each iteration at least
1/6 of the line segments are deleted. When the classes form a KP the algorithms reduce
to that of Balas and Zemel [4] for LKP. As Martello and Toth [52] modified the Balas and
Zemel algorithm for LKP to a primal approach which is easier to implement, we will now
modify the Dyer and Zemel algorithm for LMCKP in a similar way.

Assume that N, is the fractional class and that items b, and b} are the fractional
variables in N,, such that x., + T4 = 1, possibly with z,y = 0. Moreover let b; be
the LP-optimal choice in class N;, 1 =1,...,k, © # a. Due to the properties of LMCKP

7.3. A PARTITIONING ALGORITHM FOR THE LMCKP 113

given in Proposition 7.2, LMCKP may be reformulated as finding the slope

op ; —
)\ — _ﬁ — paba paba ; (710)
0w Wab, — Wap,

such that the weight sum of the LP-optimal choices satisfy

D wip, +wap, < € <Y Wi, + Wa,, (7.11)
i#a i#a

det(w,-j,pij,éw,éﬁ) < det(wibi,pibi,(Sw,dﬁ), 1=1,...,k, 7=1,...,n,. (712)

Here (7.11) ensures that N, is the fractional class, and (7.12) ensures that each item
b; € N; is at the upper convex boundary of the set.

The formulation (7.10)-(7.12) allows us to use a partitioning algorithm for finding the
optimal slope A. In the following algorithm we assume that the classes of items N; are
represented as a list [IV1,..., Nix] and items in each class are also represented as a list
[J1, - - -, Jn;]- Elements may be deleted from a list by swapping the deleted element to the
end of the list, and subsequently decreasing the list’s length. Thus at any step, £ and n;
refer to the current number of elements in the list. The partitioning algorithm looks like
this:

Algorithm 7.2 Partition.

0 Preprocess. For all classes : = 1,...,k let a; and ; be indices to the items having
minimal weight (resp. maximal profit) in IV; (see Figure 7.5). In case of several items
satisfying the criterion, choose the item having largest profit for a; and smallest
weight for 3;. Set W = P = 0, and remove those items j # 3; which have w;; > w;g,
and p;; < p;g;, since these are dominated by item ;. If the class IV; has only one
item left, save the LP-optimal choice b; = 3; and set W =W +wy,, P = P + pa,,
then delete class V.

1 Choose median. For M randomly chosen classes N; define the corresponding slope

i = gf} = 5‘3# Let A = é@ be the median of these M slopes (Different choices
13 'Lﬁi Wia; w

of the constant M lg k will be discussed at the end of this section).

p
*fi

o (X;

> W

Figure 7.5: Preprocessing of N;. White nodes are dominated by ;.

114

CHAPTER 7. A MINIMAL ALGORITHM FOR THE MULTIPLE-CHOICE KP

(6w, 6p)

[Ye7;

(6w, 0p)

> W

Figure 7.6: Conclusion of ;.

Find the conclusion. For each class NV; find the items which maximize the projection
on the normal to (6w, 0p), i.e. which maximize the determinant

det(wij, Dij, 5@, 5@) = ’U)Zjé]_Q - p”(Sw (713)

See Figure 7.6. We swap these items to the beginning of the list such that they have
indices {1,...,4;} in class N;.

Determine weight sum of conclusion. Let g;, h; be the lightest (resp. heaviest) item
among {1,...,4;} in class IV;, and let W’ and W" be the corresponding weight sums.
Thus W/ =W + Yk | Wi, and W' =W + K Win,-

Check for optimal partitioning. If W' < ¢ < W" the partitioning at (47, 0p) is
optimal. First, choose the lightest items from each class by setting b; = ¢;, W =
WHwip;, P = P+ps,. Then while W —w;g, +w;p; < crun through the classes where
¢; # 1 and choose the heaviest item by setting b; = h;, W =W —w;q, +wip;, P =
P —pig, +pip;- The first class where W —w; 4, +w;p; > c is the fractional class N, and
an optimal objective value to LMCKP is zpycxp = P + (¢ — W)A. If no fractional
class is defined, the LP-solution is also the optimal IP-solution. Stop.

Partition. We have one of the following two cases: 1) If W’ > ¢ then the slope A
was too small (see Figure 7.7). For each class N; choose (; as the lightest item in
{1,...,4;} and delete items j # §; with w;; > wig,. 2) If W” < ¢ then the slope

Bis °\

p

SIEN

Figure 7.7: Partition set NN;.

> W

7.4. EXPANDING CORE 115

A= g—g was too large. For each class N; choose «; as the heaviest item in {1,...,4;}
and delete items j # o; with p;; < pig, (items j with w;; < wj,, are too light, and
items with w;; > Wiq;, Pij < Pia; are dominated). If the class N; has only one item
left, save the LP-optimal choice b; = 3; and set W =W +wy,,, P = P + py,, then

delete class N;. Goto Step 1.

Depending on the choice of M in Step 1, we obtain different behavior of the algorithm.
The best performance is obtained by choosing A as the median of all slopes \;, 1 =1,...,k
(i.e. choose M = k) but for practical purpose M < 15 works well. Note that in the KP
case, Algorithm 7.2 becomes the partitioning algorithm of Balas and Zemel [4].

Proposition 7.3 If we choose A = % as the exact median of M different slopes \; = gg’_
in Step 1 of Algorithm 7.2, at least [M/2] items are deleted at each iteration.

Proof Since A is the median of the M classes, we have \; < X for [M/2] classes,
so for these classes at least one item j # ; exists which maximizes (7.13). Similarly
we have \; > X for [M/2] classes, so for these classes at least one item j # f3; exists
which maximizes (7.13). If W' > ¢ in Step 5, at least [M/2] items {f;} will be deleted.
Otherwise if W” < ¢, at least [M/2] items {«;} will be deleted. O

Corollary 7.1 If M =1 at least one item is deleted at each iteration of Algorithm 7.2,
yielding a complexity of O(n?).

Corollary 7.2 If M = k and the size of each class n; is bounded by a constant K,
Algorithm 7.2 runs in O(n).

Proof Due to Proposition 7.3 at least [g] items are deleted at each iteration. Since n; is
bounded by K it means that at least [5-n] items are deleted at each iteration, yielding
the complexity. O

7.4 Expanding core

Considering the KP, Balas and Zemel [4] proposed to enumerate only a small amount
of the items — the so-called core — where there was a large probability for finding an
optimal solution. However the core cannot be identified a priori, implying that in some
cases optimality of the core solution cannot be proved, and thus a complete enumeration
has to be performed.

Pisinger [75] noted, that even though the core cannot be identified before KP is solved,
it can be identified while the problem is solved by using an expanding core. This result
was improved by Pisinger [82] who showed that a minimal core may be obtained by
using dynamic programming, as the breadth-first search implies that all variations of the
solution vector have been tested before a new variable is added to the core.

We will use the same concept for MCKP, but now the core consists of the smallest
possible number of classes NV;, such that an optimal solution may be determined and
proved. Where the core for KP naturally consists of items having profit-to-weight ratios

116 CHAPTER 7. A MINIMAL ALGORITHM FOR THE MULTIPLE-CHOICE KP

close to that of the break item, there is no natural way of ordering the classes in MCKP.
Instead we use the gradients to identify a core: Define the positive and negative gradient
A and \; for each class N;, i # a by (7.7) and (7.8). Due to (7.12) we have that

op
A — < A 7.14
EA Y (7.14)
Order the sets Lt = {)\;'} according to nonincreasing values, and L~ = {\; } according

to nondecreasing values. Initially the core C' only consists of the fractional class N,, and
then we repeatedly add classes /V; corresponding to the next gradient from the ordered
sets LT and L~. Since each class occur twice (once in each set L™ and L~), we pass over
a class if it already has been considered.

7.4.1 Class reduction

Before adding a class N; to the core C' it is appropriate to fathom unpromising items
from the class. We check whether each item j € N; has an upper bound larger than the
currently best solution z. For this purpose we use an upper bound obtained by relaxing
the constraint on the fractional variables b,, b, € N, from z;,, 2y € {0,1} to z,, Ty €R
in (7.1). The upper bound on item j € N; is then

uy = P—pi,+py + AMc—W +wp, — wij), (7.15)

and if u;; < z + 1 we may fix x;; to 0. Since the bound (7.15) is evaluated in constant
time, the complexity of reducing class N; is O(n;).

If the reduced set N/ has only one item left, we fathom the class, since no choices have
to be done. Otherwise we order the items in NN} according to nondecreasing weights and
delete dominated items by applying (7.3). The computational effort is concentrated on
the sorting, yielding a complexity of O(n}logn.) where n is the size of N]. In Section 7.8
it will be demonstrated that a large majority of the items may be fixed at their optimal
value by the reduction (7.15), thus significantly decreasing the number of items which
need to be sorted.

7.5 A dynamic programming algorithm

The core is a set of currently enumerated classes C = {N,,, ..., N,,.}. We will use dynamic
programming for this enumeration, thus let fo(¢é), ¢=0,...,2c be an optimal solution to
the following core problem, where variables in classes outside the core are fixed at their
LP-optimal values:

' Z Z DijTij + Z Dib; *)

Ni€C jEN; NigC
fc(€) = max < D 2wy + Y win <E, - (7.16)
N;€C jEN; N;¢C

Z T = 1 for N; € C, Ti; € {0,1}

L JEN;

7.5. A DYNAMIC PROGRAMMING ALGORITHM 117

For an empty core C = () we set fy(¢) = S8, pw, for all ¢ > ¢ wy,, and fy(¢) = —o0
for all smaller values of ¢. Each time the core is extended with a new class NV;, then
fo+n,(€) can be found by the recursion

— wi + wip; < 2c,
— wio + wip; < 2c,

fo(€— wit + wap;) + Piv — Din;

c
fc(é — W;2 + wibi) + Di2 — Dib; ¢

if 0<
if 0<
fC+Ni (E) = max B

fo(C = Win, +wip,) + Pin; — pip, if 0 < C— wip, + wip, < 2c.

(7.17)
An optimal solution to MCKP is found as z = fc(c) for a complete core C' = {Ny, ..., Ny},
and we obtain z = —oo if assumption (7.2) is violated. Since the variables not in the

core are fixed at their LP-optimal values, we must accept capacities ¢ > ¢ in a transition
stage, as these states may become feasible at a later stage. However let

V=>" (wy, mln ww) (7.18)
N;gC
be the largest weight sum that can be released in classes outside the core. Thus only
states with ¢ < ¢+ V < 2¢ need to be considered in the recursion.

The recursion (7.17) demands O(n;) operations for each class in the core and for each
capacity ¢, yielding the complexity O(XF_, 2en;) = O(nc) for a complete enumeration.
However if optimality of a state can be proved, we may terminate the enumeartion in-
stantly. In this case the computational effort is O(c Y y.cc ni), which is very efficient for
small core sizes. The ordering of the classes according to gradients ensures that generally
only a few dozen of classes need to be enumerated even for very large instances.

The traditional recursion for MCKP as presented in Martello and Toth [53] reaches an
optimal solution by only considering feasible capacities ¢ < c as the classes are enumerated.
This approach has the drawback that a solution is not reached before all classes have been
enumerated, meaning that we have to pass through all O(nc) steps.

The space complexity of recursion (7.17) is O(kc), as for each class we only need to
save the index of the chosen item. Thus for a given core C' let the set of partial vectors
be given by

Yo = { Wiy s Ym) i €{Ll,...,n}, i=1,...,m }, (7.19)
where each variable y; determines that variable z;, = 1 while the remaining binary
variables in N; are set to zero. The weight and profit sum of a vector y; = (y1,...,Ym) €

Y¢ corresponds to the weight and profit sum of the chosen variables y,, when N,, € C,
and to the LP-optimal choices b; when N,, ¢ C. Thus

N;eC N;¢C
T = Z Diy; + Z Dib; - (7.21)
N;eC N;¢C

It is convenient to represent each vector y; € Y¢ by a state (u;, m;, v;), where p;, m; are given
above, and v; is a (not necessarily complete) representation of y;. As only undominated
states are considered we have fo(u;) = m;. An iterative version of recursion (7.17) is
presented in Pisinger [69].

118 CHAPTER 7. A MINIMAL ALGORITHM FOR THE MULTIPLE-CHOICE KP

7.5.1 Reduction of states

Although the number of states in Yo at any time is bounded by 2¢, the enumeration
may be considerably improved by applying some upper bound tests in order to delete
unpromising states.

Assume that the core C is obtained by adding classes corresponding to the first m
gradients from L~ and L™ and that N, and N, are the next classes to be added from each
set. Thus the gradients satisfy

max A < A (7.22)
Ir\péré)\:’ > A\ (7.23)

By this assumption we get the following upper bound on a state i given by (u;, ™, v;)

mi+ (c—w)N i w<e,
w@ = ¢ S e (7.24)
mi+(c—p)A, i p>ec.
For conveniency we set A/ = 0 if the set LT is empty, and \; = oo if L™ is empty,

ensuring that states which cannot be improved further are fathomed. Note that this
bound is derived in constant time, where the linear upper bound presented by Zemel [95]
demands O(n) time, improved to O(klog®(n/k)) by Dudzinski and Walukiewicz [19].

The bound (7.24) may also be used for deriving a global upper bound on MCKP. Since
any optimal solution must follow a branch in Y¢, the global upper bound corresponds to
the upper bound of the most promising branch in Ys. Therefore a global upper bound
on MCKP is given by

Upoxp = }gle:%/)éu(z) (7.25)

Since the gradient)\ will be decreasing during the solution process, and the gradient
A, will be increasing, uycxp Will become more and more tight as the core is expanded.
For a complete core C' = {Ny,..., Ny} we get uyckr = 2 for the optimal solution z.
This observation may be used for deriving an approximate algorithm for MCKP, as the
enumeration simply is halted when the current lower bound is sufficiently close to Uycxp-

7.6 Finding the solution vector

According to the principles of dynamic programming, the optimal solution vector z*
should be found by backtracking through the sets of states, implying that all sets of
states should be saved during the solution process. In the computational experiments it
is demonstrated that the number of states may be half a million in each iteration and
since the number of classes may be large (k = 10000) we would need to store billions
of states. Pisinger [82] proposed to save only the last A changes in the solution vector
in each state (u, 7, v). If this information is not sufficient for reconstructing the solution

7.7. MAIN ALGORITHM 119

vector, we simply solve a new MCKP problem with a reduced number of variables. This is
repeated till the solution vector is completely defined. More precisely we do the following:

Assume that v consists of A pairs (3, j), indicating that the variable z;; was chosen in
class N;. Whenever an improved solution is found during the enumeration of Y., we save
the corresponding state (u, 7, v). When the algorithm terminates, all variables are set to
the break solution x4, = 1fori=1,...,kand z;; =0fori=1,...,k, j# b;. Then we
make the changes registered in v:

Tij = 1, Tip; = 0, for (Z,j) SR

po=pt Z(i,j)Ev(wibi - wz’j)a (7.26)

T =T+ X 5)eo(Pin; — Pij)-
If the backtracked weight and profit sums p', 7’ correspond to the weight and profit sums
W, P of the break solution, we know that the obtained vector is correct. Otherwise we
solve a new MCKP, this time with capacity ¢ = ', lower bound z = #’ — 1, and global
upper bound u = n’. The process is repeated until the solution vector z is completely
defined. The technique has proved very efficient, since generally only a few iterations

are needed. With A = 10, a maximum of 4 iterations has been observed for large data
instances, but usually the optimal solution vector is found after the first iteration.

7.7 Main algorithm

The previous sections may be summed up to the following main algorithm:

Algorithm 7.3

procedure mcknap;

Solve LMCKP through a partitioning algorithm.

Determine gradients L™ = {\}} and L= = {\]} fori=1,...,k, i # a.

Partially sort Lt in decreasing order and L™ in increasing order.

z:=0;s:=1;t:=1; C :={N,}; Yo := reduceclass(}V,);

repeat
reduceset(Ye); if (Yo = 0) then break; fi;
N;:=L;;s:=s+1; {Choose next class from L~ }
if (N; ¢ C) then

R; := reduceclass(1V;);

if (|R;| > 1) then add(Y¢, R;);

fi;

reduceset(Yy); if (Yo = 0) then break; fi;

N;:= Lf; t:=t+1; {Choose next class from L* }

if (N; ¢ C) then

R; := reduceclass(N;);

if (|Rz| > 1) then add(Yc,RZ),

fi;

forever;

Find the solution vector.

120 CHAPTER 7. A MINIMAL ALGORITHM FOR THE MULTIPLE-CHOICE KP

The first step of the algorithm is to solve the LMCKP as sketched in Section 7.3. Hereby
we obtain the fractional class NN,, the break solution {b;} as well as the corresponding
weight and profit sum W and P.

The gradients \;” and)\; are determined and the sets L' and L~ are ordered. Since
we initially do not need a complete ordering, we use a partial ordering as presented in
Pisinger [75]: Using the quicksort algorithm for sorting (Hoare [32]), we always choose the
interval containing largest values (resp. smallest for L™) for further partitioning, while
the other interval is pushed onto a stack. In this way we continue until the largest (resp.
smallest) values have been determined. Later in Algorithm 7.3, if more values are needed,
we simply pop the next interval from the stack by need and partition it further. Thus for
small core sizes we use linear time for this ordering.

Our initial core is the fractional class N,, which is reduced by procedure REDUCECLASS.
Here we apply criterion (7.15) to fix as many variables as possible at their optimal value.
If the reduced class has more than one item left, we sort the items according to increasing
weight, and then apply criterion (7.3) to remove dominated items. Hereby we obtain the
reduced class R, which is the current set of states Y.

The set of states Y¢ is reduced by procedure REDUCESET which apply criterion (7.24)
to fathom unpromising states. Moreover the procedure checks whether any feasible state
(1 < ¢) has improved the lower bound z, and updates the current best solution in that
case.

Now we alternately include classes N; from L™ and L, each time checking if Nj
already is in the core. If this is not the case, we reduce the class, fathoming it, if only
one item is left. The reduced class R; is otherwise added to the set of states Y by using
recursion (7.17), indicated by procedure ADD above.

The iteration stops when no more states are feasible, meaning that no improvements
can occur. Note that we set \;” = 0 when LT is empty, and \; = oo when L~ is empty,
meaning that the iteration in any case will stop when all classes have been considered.

7.7.1 Minimality

Pisinger [82] proved for the 0-1 Knapsack Problem, that the MINKNAP algorithm enumer-
ates the smallest symmetrical core that can be solved to proven optimality by enumerative
core algorithms — a family of core algorithms from the existing literature. Since no algo-
rithms for MCKP that solve a core problem have been published before, we cannot here
define a family of algorithms for which MCKNAP will enumerate the smallest core. Instead
we must substantiate that the same principles apply to the MCKNAP algorithm as apply
to the MINKNAP algorithm. We have:

Definition 7.2 Given a core C' and the corresponding set of states Y. We say that the
core problem has been solved to proven optimality if one (or both) of the following cases
occur: 1) z = uyckp Where z is the best feasible solution in Yg. 2) All classes N; ¢ C
could be reduced to contain only the LP-optimal choice b;.

Note that if z = uycke then all states in Y will be fathomed by (7.24), implying that Y =
(). Thus the definition states, that we cannot prove optimality before the enumeration
terminates or all variables outside the core can be fixed at their LP-optimal values.

7.7. MAIN ALGORITHM 121

Since MCKP is N'P-hard we may assume that the enumeration cannot be guided by
other principles than greed. Thus if a problem can be solved to optimality with final
gradients \; and)\ then we may assume that all classes with smaller \; and larger
A/ also have been considered, as they have a smaller loss per weight unit when making
changes from the LP-optimal value. This leads to the following

Definition 7.3 MCKP has been solved with a minimal core if the following invariant
holds: A class Ny (resp. NN;) is only added to the core C' if the corresponding core
problem could not be solved to proven optimality, and the set N; (resp. N;) has the
smallest gradient A, (resp. largest gradient ;).

The definition ensures that if MCKP has been solved to optimality with a minimal core
C, no subset core C' C C' exists, such that a fixed-core algorithm can solve the problem to
optimality. Strictly speaking, if C' is a minimal core with final gradients A\ and ;" then
there does not exist a subset core C’ with final gradients A, and A} such that A\, < A
and A} > A\{. Anyway a smaller sized core C' may exist if A\, > A\ or A} < A} but
according to our definition such cores are not comparable.

Definition 7.4 The sorting effort has been minimal if 1) A class N; is sorted only when
the current core C' could not be solved to optimality, 2) V; is the next class to be included
according to Definition 7.3, and 3) only items which have passed the reduction criterion
(7.24) are sorted.

Definition 7.5 The effort used for reduction has been minimal if a class /V; is reduced
only when the core C could not be solved to optimality, and N; is the next class to be
included according to the rule in Definition 7.3.

Proposition 7.4 The presented algorithm solves MCKP with a minimal core, using
minimal sorting and reduction effort (with the mentioned order of priority).

Proof In each iteration of Algorithm 7.3 we test whether the current core problem has
been solved to proven optimality: The breadth-first search ensures that all variations of
Y have been tested, and thus z is the best feasible solution in C. If Yo = () we terminate
the algorithm, while a new class is only added to the core if some variables could not be
fixed at their LP-optimal values. Thus at any step, no subset core exists such that the
problem can be solved to proven optimality. As we follow the greedy principle for adding
classes to the core, this proves the minimality of the core.

The sorting and reduction is done by need in Algorithm 7.3, exactly as described in
Definition 7.4 and 7.5. O

For a more general discussion of minimal knapsack algorithms, see Pisinger [78].

122 CHAPTER 7. A MINIMAL ALGORITHM FOR THE MULTIPLE-CHOICE KP

7.8 Computational experiments

The presented algorithm has been implemented in C, and a complete listing is available
from the author on request. The following results have been achieved on a HP9000/730
computer.

We will consider how the algorithm behaves for different problem sizes, test instances,
and data-ranges. Five types of randomly generated data instances are considered, each
instance tested with data-range R, = 1000 or Ry, = 10000 for different number of classes
k and sizes n;:

e Uncorrelated data instances: In each class we generate n; items by choosing w;; and
pij randomly in [1, R).

o Weakly correlated data instances: In each class, w;; is randomly distributed in [1, R]
and p;; is randomly distributed in [w;; — 10, w;; + 10], such that p;; > 1.

e Strongly correlated data instances: For KP these instances are generated as w;
randomly distributed in [1, R] and p; = w; + 10, which are very hard indeed. Such
instances are trivial for MCKP, since they degenerate to subset-sum data instances,
but hard instances for MCKP may be constructed by cumulating strongly correlated
KP-instances: For each class generate n; items (w;-,p;-) as for KP, and order these
by increasing weight. The data instance for MCKP is then w;; = Zfl:l Wy, Pij =
>7 1Py, Jj = 1,...,n; Such instances have no dominated items, and form an
upper convex set.

e Subset-sum data instances: w;; randomly distributed in [1, R] and p;; = w;;. Such
instances are hard since any upper bound will yield u;; = c.

e Sinha and Zoltners instances: Sinha and Zoltners [90] constructed their instances in
a special way. For each class construct n; items as (w;-, p;) randomly distributed in
[1, B]. Order the profits and weights in increasing order, and set w;; = w’, pi; =
p;, Jj=1,...,n;. Note that such data instances have no dominated items.

Table I: Final core size. Average of 100 instances.

Uncorrelated | Weakly corr. | Strongly corr. | Subset sum | Sinha Zolt.

k n; R1 R2 R1 R2 Rl R2 R1 R2 R1 R2
10 10 2 2 8 8 8 9 2 4 6 5
100 10 8 9| 11 16 85 84 2 4| 17 17
1000 10 | 15 20 7 12 | 791 775 0 2| 18 33
10000 10 | 10 28 1 10 | 7563 7800 0 0| 11 33
10 100 2 3 4 5 8 8 1 2 7 8
100 100 7 10 3 6 84 95 0 1] 15 34
1000 100 6 17 1 4| 839 915 0 0| 11 41
10 1000 1 2 2 2 4 8 0 1 6 9
100 1000 1 6 0 2 25 82 0 0 9 30

7.8. COMPUTATIONAL EXPERIMENTS 123

Table II: Percentage of all classes which have been tested by the upper bound. Average
of 100 _instances.

Uncorrelated | Weakly corr. | Strongly corr. | Subset sum | Sinha Zolt.

k n; R1 R2 Rl R2 R1 R2 R1 R2 R1 R2
10 10 | 52 55 | 87 88 | 85 88 | 23 37 | 83 82
100 10 | 46 63 | 14 19 | 87 86 2 4| 68 80
1000 10 | 20 52 1 1| 82 82 0 0] 18 70
10000 10 0 26 0 0] 78 80 0 0 0 19
10 100 | 42 60 | 43 55 | 81 81| 10 19 | 80 90
100 100 | 23 56 3 6| 84 95 0 1| 23 82
1000 100 1 29 0 0| 84 92 0 0 2 21
10 1000 | 10 48 | 16 20 | 45 79 0 11 | 66 97
100 1000 1 20 0 2| 25 82 0 0] 11 39

The constant M in Algorithm 7.2 was experimentally found to give best performance for
M = 15. For each data instance the capacity ¢ was chosen as

1
= 3 g (grel}\ll] wi; + max ww) (7.27)

We construct and solve 100 different data instances for each problem type, size and range.
The presented results are average values or extreme values.

First Table I shows the average core size (measured in classes) for solving MCKP to
optimality. For most instances only a few classes need to be considered in the dynamic
programming. The strongly correlated data instances however demand that almost all
classes are considered. Table II shows how many classes have been tested by criterion
(7.15). Tt is seen, that when many classes are present, only a few percent of the classes are
reduced, meaning that we may solve the problem to optimality without even considering
a large majority of the classes. The strongly correlated data instances again demonstrate
that almost all classes must be considered.

The efficiency of the upper bound (7.15) is given in Table III. The entries show how
many percent of the tested items which are reduced. Generally a large majority of the
variables are fixed to their optimal value this way. To illustrate the hardness of the
dynamic programming, we measure the largest size of Y for each data instance in Table

Table ITI: Percentage of tested items which are reduced. Average of 100 instances.

Uncorrelated | Weakly corr. | Strongly corr. | Subset sum | Sinha Zolt.

k n; Rl R2 Rl R2 R1 R2 R1 R2 R1 R2
10 10| 83 84 | 48 27 | 45 34 0 0| 70 73
100 10 | 88 88 | 62 56 | 51 51 0 0| 86 86
1000 10 | 89 90 | 68 49 | 53 54 0 0| 88 89
10000 10 | 86 90 | 80 68 | 50 52 0 0| 72 90
10 100 | 98 98 | 75 61 | 84 79 0 0| 86 85
100 100 | 99 99 | 87 68 | 85 85 0 0| 93 97
1000 100 | 98 99 | 94 86 | 84 85 0 0| 94 98
10 1000 | 100 100 | 87 58 | 50 94 0 0 89 90
100 1000 | 100 100 | 94 85 | 50 94 0 0 93 96

124 CHAPTER 7. A MINIMAL ALGORITHM FOR THE MULTIPLE-CHOICE KP

Table IV: Largest size of Y in dynamic programming, measured in thousands. Maximum
of 100 _instances.

Uncorrelated | Weakly corr. | Strongly corr. | Subset sum | Sinha Zolt.

k n; R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
10 10 0 0 1 10 3 24 4 47 0 0
100 10 0 0 4 52 7 68 4 38 0 0
1000 10 1 0 4 39| 20 194 0 28 2 3
10000 10 1 4 5 46 | 84 572 0 0 4 12
10 100 0 0 4 40 1 10 3 28 1 1
100 100 0 0 4 40 4 26 3 28 3 3
1000 100 0 1 3 43 | 10 106 0 0 4 8
10 1000 0 0 3 35 3 4 0 30 3 10
100 1000 0 0 3 36 | 25 9 0 20 4 31

Table V: Total computing time in seconds. Average of 100 instances.
Uncorrelated | Weakly corr. Strongly corr. Subset sum | Sinha Zolt.
k n; R1 R2 Rl R2 Rl R2 R1 R2 R1 R2
10 10 | 0.00 0.00 | 0.01 0.05 0.01 0.09 | 0.01 0.17 | 0.00 0.00
100 10 | 0.00 0.00 | 0.02 0.28 0.37 5.16 | 0.01 0.11 | 0.01 0.01
1000 10 | 0.03 0.03 | 0.03 0.23 7.30 92.46 | 0.01 0.09 | 0.04 0.05
10000 10 | 0.25 0.31 | 0.24 042 | 169.94 1628.57 | 0.17 0.17 | 0.33 0.41
10 100 | 0.00 0.00 | 0.03 0.58 0.02 0.19 | 0.06 1.05 | 0.01 0.02
100 100 | 0.02 0.02 | 0.03 0.55 0.33 6.93 | 0.01 0.68 | 0.05 0.07
1000 100 | 0.14 0.17 | 0.16 0.43 9.57 195.75 | 0.13 0.13 | 0.24 0.32
10 1000 | 0.02 0.03 | 0.12 2.75 1.64 0.14 | 0.02 12.55 | 0.19 0.74
100 1000 | 0.12 0.15 | 0.18 1.11 | 173.69 2.97 | 0.13 0.15 | 041 2.66

IV. It is seen that strongly correlated data instances may result in more than half a
million states. Still this is far less than the space bound O(2c¢).

Finally Table V gives the average computational times. Easy data instances are solved
in a fraction of a second. Only the strongly correlated instances demand more computa-
tional effort, but are still solved within 30 minutes. For comparison it should be mentioned
that Sinha and Zoltners [90] solve SZ type problems of size k = 50, n; = 10 in 0.12 sec-
onds, while Armstrong et. al. [2] solve the same problems of size k¥ = 400, n; = 100 in
2.71 seconds. Both references generate the weights in a small range R < 100 meaning
that very little enumeration is necessary to obtain an optimal solution.

The above results indicate that the presented algorithm outperforms any algorithm for
MCKP, implying that the stated minimal properties actually cause drastical reductions in
the computational times. More computational experiments with the presented algorithm
can be found in Appendix A.

7.9 Conclusions
We have presented a complete algorithm for the exact solution of the Multiple-Choice

Knapsack Problem. To our knowledge, it is the first enumerative algorithm which makes
use of the partitioning algorithms by Dyer [21] and Zemel [96]. In order to do this, it has

7.9. CONCLUSIONS 125

been necessary to derive new upper bounds based on the positive and negative gradients,
as well as choosing a strategy for which classes should be added to the core.

The algorithm satisfies some minimality constraints as defined in Section 7.7.1: It
solves MCKP with a minimal core, since variables only are added to the core if the current
core could not be solved to optimality, and the effort used for sorting and reduction is
also minimal according to the stated definitions.

The computational complexity is O(n + ¢ Y y.ccni) for a minimal core C, thus we
have a linear solution time for small cores, and pseudo-polynomial solution time for large
cores. Computational experiments document that the presented algorithm is indeed very
efficient. Even very large data instances are solved in a fraction of a second; only strongly
correlated data instances demand more computational effort.

Appendix A: 0-1 Knapsack Problems

The algorithm developed, may equally well be used for solving 0-1 Knapsack Problems,
but this will naturally yield some overhead compared to specialized algorithms for the
0-1 Knapsack Problem. It is however interesting to see, how the MCKNAP algorithm
behaves in these extreme cases, as several of the algorithmic principles are generalizations
of similar results for the 0-1 Knapsack Problem.

Table VI compares the running times of MCKNAP with those of MINKNAP [82]. It is
seen, that generally MCKNAP spends about 10 times more computational time for the
solution than MINKNAP. However column PREP shows, that most of the overhead is spent
for the preprocessing (sorting and removal of dominated items) where MINKNAP obviously
is able to use a faster algorithm for these steps, as there are no dominated items in the
classes of a 0-1 Knapsack Problem.

In spite of the higher computational times for MCKNAP it is seen, that the developed
algorithm has a stable behavior, even in this extreme case.

Table VI: Total computing time in seconds for solving 0-1 Knapsack Problems. Uncorre-
lated data instances. Average of 100 instances.

Ry Ry
k MINKNAP MCKNAP PREPROC | MINKNAP MCKNAP PREPROC
100 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.00 0.02 0.01 0.00 0.02 0.01
10000 0.01 0.13 0.12 0.02 0.21 0.12
100000 0.10 1.37 1.36 0.16 1.53 1.34

126 CHAPTER 7. A MINIMAL ALGORITHM FOR THE MULTIPLE-CHOICE KP

Chapter 8

A Minimal Algorithm for the
Bounded Knapsack Problem

The Bounded Knapsack Problem (BKP) is a generalization of the 0-1 Knapsack
Problem where a bounded amount of each item type is available. The currently
most efficient algorithm for BKP transforms the data instance to an equivalent
0-1 Knapsack Problem, which is solved efficiently through a specialized algorithm.
However this chapter demonstrates, that the transformation introduces many similar
weighted items, resulting in very hard instances of the 0-1 Knapsack Problem.

To avoid these problems, a specialized algorithm is proposed which solves an
expanding core problem through dynamic programming, such that the number of
enumerated item types is minimal. Sorting and reduction is done by need, resulting
in very little effort for the preprocessing. Compared to other algorithms for BKP,
the presented algorithm uses tighter reductions and enumerates considerably less
item types. Computational experiments are presented, showing that the presented
algorithm outperforms all previously published algorithms for BKP.

Keywords: Bounded Knapsack Problem; Dynamic Programming; Reduction

8.1 Introduction

Given n item types to pack in some knapsack of capacity c. Each item type j has a profit
pj, weight w;, and a bound m; on the availability. The problem is to select a number
z; (0 < z; < m;) of each item type such that the profit sum of the included items is
maximized without having the weight sum to exceed c¢. The Bounded Knapsack Problem
(BKP) may thus be defined as the following optimization problem:

n
maximize z = ij:rj
j=1

subject to Y w;z; <, (8.1)
7j=1
z; €{0,1,...,m;}, j=1,...,n,

127

128 CHAPTER 8. A MINIMAL ALGORITHM FOR THE BOUNDED KP

where all coefficients are positive integers. Without loss of generality we may assume that
mjw; < cfor j =1,...,n so all items avilable of a given type fits into the knapsack, and
that 7% ; mjw; > c to ensure a nontrivial problem. If we relax the integrality constraint
z; € {0,1,...,m;} in (8.1) to the linear constraint 0 < z; < m;, we obtain the Linear
Bounded Knapsack Problem (LBKP). If m; =1 for all item types we get the well-known
0-1 Knapsack Problem (KP).

BKP is NP-hard as it contains KP as a special case, but it can be solved in pseudo-
polynomial time through dynamic programming [53]. The present chapter is devoted to
data instances with moderate values of m;, since if the bound on each item type is wide,
other kinds of algorithms perform better — especially those designed for the unbounded
knapsack problem where m; = 0o, j =1,...,n (see Martello and Toth [54]).

Several industrial problems which usually are solved as 0-1 Knapsack Problems may
equally well be formulated as Bounded Knapsack Problems, thus taking advantage of the
fact, that most products come from series of identical item types. Many combinatorial
problems can be reduced to BKP, and the problem arises also as a subproblem in several
algorithms of integer linear programming.

Only a few specialized algorithms for BKP have been published, but the following
should be mentioned: Martello and Toth [47], Ingargiola and Korsh [39], and Bulfin,
Parker and Shetty [8]. However Martello and Toth [53] demonstrate, that all these al-
gorithms are outperformed by their MTB2 algorithm, that transforms the BKP to an
equivalent KP which is solved by a specialized algorithm. The transformation from BKP
to KP is based on a binary coding of the bound m; on each item type j. Thus each item
type is replaced by |log, m; + 1] items in the KP case, as follows:

(pjrw;), (2p5,2w;), (4pj,4w;), ..., (2" 'p;,2° 'w;), (dp;,dw;), (8.2)

where a = |logym;|, and d = m; — 2?2—01 2. This approach is very elegant, but several
problems arise:

e Many new variables are introduced by the transformation, implying that Martello
and Toth [53] are not able to solve very large data instances (n > 50000) due to
memory limitations.

e Pisinger [70] showed that 0-1 Knapsack Problems with many similarly weighted
items are hard to solve, since it is difficult to combine the items such that a filled
knapsack is obtained. By transforming a BKP to the corresponding KP, we actually
get many proportionally weighted items, meaning that the problems are very hard
to solve.

e Martello and Toth [53] do not recognize this problem, since their test instances have
capacity ¢ = %2?21 mjw;. For the so-called weakly correlated data instances, this
choice of capacity leads to the easiest possible data instances. Figure 8.1 shows the
actual running times of MTB2 when the capacity is varied from 1% to 99% of the
total weight sum. Each point shows the average times of 200 randomly generated
data instances with the given capacity. The weights are randomly distributed in
[1,100], while the bounds are distributed in [1, 10]. For ¢ = 50% the running times

8.1. INTRODUCTION 129

0% T .
0% T . ST :
100+, P s
100 4+ - o e o s . o et .
-t - S R T
1021 " o,
f f f f f f f f f f C
10% 50% 100%

Figure 8.1: Average computational times for MTB2 in seconds (log. scale), as function of
the capacity c. Weakly correlated instances, n = 2000, R = 100, m; in [1, 10].

are measured to 0.01 seconds, while for most other capacities they are hundreds of
times larger.

However Figure 8.1 suffers from the problem, that the exponentially growing com-
putational times of MTB2 make it difficult to ascribe a merit to the mean values.
Thus Figure 8.2 shows the average values of the logarithm to the computational
times. Here it is even more clear, that a capacity chosen as 50% of the total weight
sum leads to the easiest data instances.

e Better reductions can be achieved by applying specialized reductions for the bounded
knapsack problem. If the BKP is transformed to the corresponding KP, each item
is reduced separately, meaning that you cannot give a total bound on the number
of items of a given type, that may be included in the knapsack.

These observations motivate construction of a specialized algorithm for the BKP, which
adapts the latest results from the solution of 0-1 Knapsack Problems and Multiple-choice
Knapsack Problems. The presented algorithm — called BOUKNAP — is based on dynamic
programming, where the enumeration starts from the LP-optimal solution and propagates
guided by some greedy principles. Since the necessary sorting and reduction is done by
need, we are able to establish some minimal properties for the algorithm.

Section 8.2 gives a brief introduction to minimal algorithms for knapsack problems,
while Section 8.3 brings some basic definitions and sketches the main part of BOUKNAP. A
recursive formulation of the dynamic programming is given in Section 8.4, while Sections

50% 100%

Figure 8.2: Average log computational times for MTB2 in seconds, as function of the
capacity c¢. Weakly correlated instances, n = 2000, R = 100, m; in [1, 10].

130 CHAPTER 8. A MINIMAL ALGORITHM FOR THE BOUNDED KP

8.5 and 8.6 bring some reduction rules for reducing item types, and for fathoming states
in the dynamic programming. Finally Section 8.7 shows how the solution vector corre-
sponding to the objective value is determined. Computational experiments, comparing
BOUKNAP with the algorithm MTB2 of Martello and Toth [53], are presented in Section
8.8.

8.2 Minimal algorithms

Balas and Zemel [4] presented an efficient algorithm for the solution of the 0-1 Knapsack
Problem by focusing the enumeration on a so-called core: A small subset of the items
where there is a high probability for finding an optimal solution through permutations.
Assume that the items are ordered according to nonincreasing efficiencies e; = p;/w;, and
let the break item b be defined as:

b=min{j: > w; >c}. (8.3)

Then the core C is basically an interval [s,t] 3 b of the sorted items, such that items
j ¢ C may be fixed at their LP-optimal values through reduction tests. The smallest size
of a core can obviously not be identified before the problem is solved, since it demands
knowledge on the optimal solution, but several estimates on the expected core size have
been proposed by Balas and Zemel [4] and Martello and Toth [52,53].

However Pisinger [82] presented an adaptive technique such that a minimal core can
be derived during the solution process. The principles may easily be generalized to the
Multiple-choice Knapsack Problem [81], or — as presented here — the Bounded Knapsack
Problem.

e The algorithms are based on dynamic programming to obtain a pseudo-polynomial
worst-case behavior.

e The enumeration starts from the LP-optimal solution and continues in a symmetric
way outwards from the fractional variable of the LP-solution. Thus we enumerate
a so-called expanding core C.

e In each step of the dynamic programming we branch on the variable which gives
the largest gain per weight unit, or the smallest loss per weight unit. This is known
as the greedy approach.

e Both sorting and reduction is done by need. When the enumeration reaches the
border of the current core, new items are simply reduced, sorted, and added to the
core.

e The process stops, when all states of the dynamic programming have been fathomed
due to a bounding test, or when all items outside the core could be fixed at their
LP-optimal value through reduction rules.

8.3. DEFINITIONS AND MAIN ALGORITHM 131

e We would like to minimize all steps of the algorithm: sorting, reduction and enumer-
ation, but due to the computational complexity of each step, an obvious hierarchy
evolves:

1 Highest ranked is to obtain the smallest possible core, since enumerating the
core has exponential growth O(2").

2 Limiting the so-called strong reduction has second priority, since the complexity
of the reduction is O(r) where r is the number of states at the current stage of
the dynamic programming.

3 The smallest possible sorting has third priority, since sorting n items has the
complexity O(nlogn).

4 Lowest ranked is to reduce items with the so-called weak upper bound test,
since testing n items may be done in O(n).

Since all possible variations of the solution vector in the core have been tested before the
core is extended with a new item type, and since the choice of the considered items is
guided by greedy principles, the final core C' is minimal in the following sense:

Assume that the core was given in advance as an interval [s, t] of the sorted items, like
in MT2 by Martello and Toth [52]. In order to solve the problem to proven optimality, we
demand that either the enumeration fades out due to some bounding rules before reaching
the item types s —1 or ¢t + 1, or that all remaining variables z; € C' may be fixed at their
LP-optimal values by reduction rules.

But the presented algorithm finds the smallest symmetrical core, such that an algo-
rithm like MT2 is able to prove the optimality when given the core in advance (see [82]
for a proof). Strictly speaking this means, that you cannot find a subset core C' = [¢', ']
of the minimal core C' = [s,t] with ey > e; and ey < e; such that a fixed-core algorithm
solves the core problem to proven optimality.

The reductions of a minimal algorithm are tight, since the bounding rules are not
applied before all item types of higher (resp. lower) efficiency have been enumerated,
thus ensuring the tightest possible lower bound.

The complexity of a minimal algorithm for the Bounded Knapsack Problem is

O(TL + min{ms TMigyq - - Ty, ‘C|610g C}), (84)

meaning that for moderate core sizes |C| = t —s+1, we have a linear-time behavior, while
hard instances demanding a complete enumeration have a pseudo-polynomial solution
time.

8.3 Definitions and main algorithm

The Linear Bounded Knapsack Problem is easily solved by a greedy algorithm: Order the
item types according to nonincreasing efficiencies such that

e; >e; if i<y, (8.5)

132 CHAPTER 8. A MINIMAL ALGORITHM FOR THE BOUNDED KP

frequency
50% T :
10%T '.
' ' ' N | — ' ' : +— item type j
100 b 1000

Figure 8.3: Frequency of item types j where the optimal solution differ from the break
solution. Average of 1000 uncorrelated data instances n = 1000, R = 10 000.

and define the break item type b as
b = min {j Y maw; > c}) (8.6)

Then an optimal solution to LBKP is defined as z; = m; for j =1,...,b—1,and z; =0
for j=b+1,...,n, while we set
(c— 2;% m;w;)py

= . 8.7
% - (5.7

The break item type may be found by adapting the technique of Balas and Zemel [4]
or through partial sorting as presented in Pisinger [75]. Both techniques lead to an O(n)
solution time for the LBKP. By truncating the LP-optimal solution to x; = 0 we obtain the
break solution z', which has profit sum p = Zg’-;i m;p; and weight sum w = Zg’-j miw;.

The break solution is a tight lower bound, since generally it is only necessary to
modify a few variables around b in order to obtain an optimal solution. Figure 8.3 shows
the frequency of item types where the IP-optimal solution differ from the break solution.
The graph is a result of solving 1000 randomly generated data instances, constructed such
that b = 500 for all problems. It is clearly seen that generally only a dozen item types
need to be enumerated, and that the probability for changes decreases steeply with a
variables distance from b.

This motivates the enumeration of an expanding core C' starting from the break item
type. The greedy approach for choosing the next variable to be added to the core ensures
that those variables, where there is largest probability for changes from the LP-optimal
values, are enumerated first. For a core C' = [s,] the complete set X ; of solution vectors
is given by

Xs’t:{ (@g,...,ze) =z €{0,...,m;}, j=s,...,t }, (8.8)

but we will use some fathoming and dominance rules to avoid a complete enumeration.

Sorting and reduction is done by need during the enumeration, thus at any stage [s', ¢']
denotes the interval of sorted items, which have passed the reduction test, while z denotes
the current lower bound. We may sketch the main part of algorithm BOUKNAP as:

8.3. DEFINITIONS AND MAIN ALGORITHM 133

Algorithm 8.1
procedure bouknap(n,c,p, w, m, x);
partsort(1,n); { Find break item type b through partial sorting }
[s,8] == [b,0]; [s', ¢'] == [b, b];
z:=0; Xy :={(0),..., (mp)};
reduceset (X);
while (X, # 0) do
if (s —1>s') then
d := tighten(s — 1);
if (d # 0) then X,_,; = add(X,,, s — 1,d); fi;
s:=s—1;
fi;
reduceset (X5 ¢);
if (t+1<t) then
d := tighten(t + 1);
if (d # 0) then X, = add(X,,,t+ 1,d); fi;

ti=t+1;
fi;
reduceset (X);
elihw;

The first step of the algorithm is to find the break item type b through partial sorting in
O(n) time, as described in Pisinger [75]: We use a partitioning algorithm like QUICKSORT
[32] to partition the variables into two sets around the median A such that e; > A for
j € [1,i], while e; < A for j € [i +1,n]. If 23-:1 m;w; < ¢, we may conclude that b
cannot be in the interval [1,4], and may thus discard the interval. Otherwise we discard
the interval [+ 1,n]. The process is repeated till the current interval only contains b. All
discarded intervals are pushed to a stack, since they represent a partial ordering of the
items, which will be applied later in the algorithm.

Now the algorithm solves an expanding core C' = [s,t], such that initially the core
only consists of the break item, and then successively it is extended to the left or to the
right. We use dynamic programming for enumerating the core, meaning that procedure
ADD enumerates all possible variations of the current core plus item type s —1 or ¢ + 1.

Dominance relations and bounding rules ensures that only a limited number of the
ms - - -my; possible variations of the core are enumerated. Procedure REDUCESET uses
some bounding rules to fathom states, which cannot lead to an improved solution. These
rules are further described in Section 8.5. Furthermore, the procedure updates the lower
bound z, and extends the core by need.

Procedure TIGHTEN(j) tightens the bound z; € {0,...,m;} by applying some bound-
ing rules on the number of items inserted/removed of the concerned item type. Thus
the obtained bound d means that only d < m; item values have to be enumerated in
procedure ADD, and if d = 0 we may even fathom the variable j. The procedure TIGHTEN
is further described in Section 8.6.

Algorithm BOUKNAP terminates when all states X,; have been fathomed, meaning
that a better solution than the current cannot be found.

134 CHAPTER 8. A MINIMAL ALGORITHM FOR THE BOUNDED KP

8.4 Dynamic programming

Let fi(¢), (0 <i<mn, 0<¢<c)bean optimal solution to the following subproblem of
BKP, defined on the first ¢ variables of the problem:

fi(e) = maX{ijxj 1Y wizy < é xy €{0,...,m;} for j = 1,...,2'}. (8.9)

Generalizing the results by Bellman [5] for the 0-1 Knapsack Problem, we obtain the
following recursion formula for the solution of BKP

fi—1(€) if é>0
fi(€) = max f ! s (8.10)
fic1(€ = msw;) +mp; if € —muw; >0
while we set
fo@ =0foré=0,...,c (8.11)

By changing the recursion to an iterative process Gilmore and Gomory [30] and Nemhauser
and Ullmann [62] developed dynamic programming algorithms with pseudo-polynomial
time bounds. However, none of the algorithms are able to solve large instances: Nemhauser
and Ullmann report that the largest instances solved were n = 50 with m; = 2 for all
item types.

The problem about these algorithms is that the enumeration has no strategy, since the
recursion formula may be evaluated without the sorting (8.5), resulting in an arbitrary
enumeration. However, if we order the item types in advance, the enumeration gets
even worse: We start the enumeration at those item types (1,2,...) where there is least
probability (cf. Figure 8.3) for changing the solution variables from their LP-optimal
values — generating billions of states before the problem even starts to be interesting.

A more efficient recursion should take into account, that generally only a few items
around b need to be changed from their LP-optimal values in order to obtain the IP-
optimal values. Assume that the items are ordered according to nonincreasing efficiencies,
and let f,4(¢), (s <b, t>b—1, 0 < &< 2c) be an optimal solution to the core problem:

G2 myp; + i Py
fo(€) = max{ SITimiw; + Yo wiz; < : (8.12)

zj €{0,...,m;} forj=s,...,t

8.5. REDUCTION 135

This leads to the following improved recursion:

([foi-1(E) if t>0b
fst—1(€ —wi) + py if t>b0, ¢c—w; >0

fop—1(€ —mywy) +myp, if ©>0, ¢—muw, >0

fs,4(€) = max ¢ Froa(@) $ s <b (8.13)
fs+1,t(6+ws)_ps if 5<b, c+ ws < 2c
| forre(E+mew,) —meps if s <b, E+mw, < 2c
while we set .) B
Jop—1(¢) = —o0 for ¢= E...,w -1, (8.14)

fop-1(6) =D for c=w,...,2c.

Thus the enumeration starts at (s,t) = (b,b — 1) and continues by either removing some
items of type s from the knapsack, or inserting some items of type ¢ in the knapsack. An
optimal solution to BKP is found as f;,(c).

At any stage of the enumeration, it is convenient to represent the states by the cor-
responding profit and weight sums (7,), thus with a core C' = [s, t] the set of states is

Xsp={(m1, 1), .., (7, ptr) }, where
i = fsp(i)- (8.15)

It is convenient to keep the states ordered, such that X, = {(71, tt1), . . ., (70, 1) } satisfies
m; < mip1 and p; < pir1- Any state (7, p) with g > c+ Zj;} m;w,, may be fathomed, since
even if we removed all items of types j < s in the forthcoming iterations, the state would
never become a feasible solution. This observation implies that no states with weights
i > 2c¢ can occur, giving the algorithm space complexity O(n2c) = O(nc).

An efficient iterative version of recursion (8.13) is obtained by applying the transforma-
tion (8.2) for the current item type, such that the procedure ADD in Algorithm 8.1 results
in |log, m;+1| mergings of length O(c) (see Pisinger [67] for details on the merging). This
means that the time complexity for the dynamic programming is O(c 327, |logy m; +1]),
i.e. O(nclogc) in the worst case.

For moderate core sizes |C| = t — s+ 1 we obtain a tighter bound, as only O(|C|clogc)
steps are necessary. Moreover we use dynamic programming by reaching, meaning that

at most O(mg - myyq - - - my) states should be considered. Thus we obtain the time bound
O(min{ms M1 - - Ty, ‘C|Clogc}): (816)

on the enumeration of a core C = [s, t].

8.5 Reduction

Although the recursion (8.13) gives a pseudo-polynomial time bound on the solution
process, even less enumeration may be done by incorporating some bounding rules in the

136 CHAPTER 8. A MINIMAL ALGORITHM FOR THE BOUNDED KP

dynamic programming. Assume that the current core is C' = [s, t], and that a given state
i has the profit and weight sum (7;, i1;). We may then fathom the state if the following
condition holds:

u(i) < z+1, (8.17)

where the upper bound u(%) on the stage is obtained by relaxing the constraints on x,_;
and x411 to z,_1 > 0 and 747 > 0, yielding:

T+ (C - Mz')Pt+1

if i <cg,
u(i) = i (8.18)
m; + % if p; > c.
This bound may also be used for deriving a global upper bound on (8.1) as
Upkp = max u(7), (8.19)

iEXs,t

which has the property that it converges towards the optimal solution for increasing core
sizes.

Since s — 1 or £+ 1 in (8.18) may fall outside the current reduced and sorted interval
[s',t'], we have to extend the core in such cases. This is done the following way:

e If all items j < s’ have been fathomed due to (8.17) we choose p; ; = oo and
ws_1 = 1. Similarly if all items j > t' have been fathomed we choose p;;; = 0
and wyy1 = 1. In both cases the bounds will ensure that states which cannot be
improved further are fathomed.

e Otherwise we choose one of the partially ordered intervals discarded by procedure
PARTSORT and try to fix as many variables x; as possible, at their optimal values.

An item type 7 may be fathomed if either all the available items of that type have to be
included in the knapsack (j < b) or if none of the available items of that type can be
included in the knapsack (j > b). Thus we may use the following fathoming tests

_ C— W+ w,; e -
p—pj+(Wy 7)pb<z+1 if 7>0,

(8.20)

ﬁ+pj+(c_ww_bwj)p” <z+1 if j<b

where the left sides are known as the weak upper bounds. If the inequality is satisfied,
we may fix z; at m; (j < b), respectively at 0 (j > b), and thus fathom the item type.
The remaining variables are swapped to positions besides [s',#'], where they are sorted
and added to the core. See Pisinger [67] for more details.

8.6 Tightening the bound on an item type

Since the enumeration of a new item type is computationally very expensive, a strong
bounding test should be used for tightening the bound on an item type ¢. In this way

8.6. TIGHTENING THE BOUND ON AN ITEM TYPE 137

the bound may be restricted from z, € {0,...,my} to z, € {0,...,d;} if £ > b or to
xp € {my — dy,...,my} if £ < b. Thus assume that the core is C' = [s, t] and that we are
going to add item type /£ to the core ({ =s—1or =1+ 1).
It is only fruitful to insert d items of type £ = £+ 1 in the knapsack if any upper bound
u on the BKP with additional constraint x, = d exceeds the current lower bound z, thus
if
ue(d) > z + 1. (8.21)

We use a generalization of the bound by Dembo and Hammer [14] for this test, obtaining

(¢ —w — dwg)py

P+ dp + >z+1 (8.22)

Wy

From this inequality we may obtain the maximum number of an item type, which may
be included in the knapsack, as:

p {det(z—i— 1 —P,¢c—,py, wp)
e =

when £=1t+1, 8.23
det(pfa We, Po, wb) J ()

where we set dy = m; when e, = e, or when the right side of equation (8.23) is larger than
my. A similar result is obtained for items of type £ = s — 1, which have to be removed
from the knapsack. Here an upper bound on the number of removed items is

J {det(z—% 1 —P,c— W, py, wp)
Z =

when /=s—1, 8.24
— det(pe, we, py, wp) J (8:24)

with the same conventions as for equation (8.23).

Although these bounds work well for most instances, tighter reductions may be derived
by using enumerative bounds as presented in Pisinger [82]. Thus with the core C' = [s, t]
let X = X, be the set of enumerated solution vectors. The ultimate check is to determine
whether any state in X + ¢ will pass the reduction (8.18) when d items of type £ are added
to the knapsack. No stronger bound can be constructed, since if the inclusion of the d
items implies that a new promising branch is introduced to X, ; there is no way of avoiding
the inclusion.

If we add d items of item type £ = ¢t + 1, any state in X + ¢ will be the sum (m; +
dpe, p1; + dwg) where 0 < d < my, meaning that the bound (8.18) for fathoming states in
X + / becomes:

i1 (i, d) = m; + dpg + (e= b fll“’f)pt“ if i+ dw, < e,

(i, d) = (8.25)

ﬂg(i, d) =m; + dpg + (C — ,uiujsfllwl)ps—l if p; +dwg > c.

Thus an upper bound for the addition of d items of type ¢ is given as
’l]e,d = 1}3{){ ’l](i, d), (826)

where we demand that 4,4 > 2 + 1. This is a generalization of the m-bound presented
in Pisinger [68]. From equation (8.25) we may derive the maximum amount d of items

138 CHAPTER 8. A MINIMAL ALGORITHM FOR THE BOUNDED KP

of the type ¢, which may be added to the knapsack such that state 7 passes the criteria
4(i,d) > z + 1. The equation

U1(i,d) > z+1 if p; +dw, <, (8.27)
may be written

: C— Wi
det(ﬂ—i —Z = 1a Hi — Cy Pey1,s wt—l—l) 2 ddet(pt—l—la W1, Pe; ’LU@) if d S w ki . (828)
£

Here the left side is positive, since any state i € X has passed the reduction (8.17), and
the right side is zero, since £ =t + 1. So the equation is satisfied for all states ¢+ when just
d< % The largest contribution we may get from this restriction is thus

max (C_'ui) = C_Ml, (8.29)
1€X Wy Wy

since the states in X are ordered, meaning that p, is the smallest weight sum. In a similar
way the equation
Uo(i,d) > z+1 if p; +dw, > ¢, (8.30)

may be formulated as

det(m; — 2z — 1, u; — ¢, ps_1, W c— l;
d S (7Tz s Hi s Ps—1, Ws 1) 1f d > ,Ufz' (831)
- det(péa Wy, Ps—1, wsfl) Wy
Those states, which does not satisfy that d > <% will not contribute to the bound d,

w

L
since they are dominated by the bound (8.29), while those states satisfying the inequality
will contribute with
— det(ﬂ—i -z]-a/“LZ — G, Ps—1, ws—l)

d' (i 8.32
() - det(pfa Wy, Ps—1, ws—l) ()
Thus the tightened bound on item type £ is
dy = max { [C — 'ulj, [maxd’(i)J} , when ¢=1+1, (8.33)
Wy 1€X
where we set dy = my if the right side of equation (8.33) is larger than m,.
A similar result is obtained for £ = s — 1, resulting in the tightened bound
_ M —C " - e
dy = max {[” |, Lrirg(xd (z)J} , when £=s—1. (8.34)

Here p, is the largest weight sum in X, while d"(7) is given by

&) = det(m; — 2z — 1, i — ¢, P41, wt+1). (8.35)
det(pe, we, Pry1, Wii1)
Note, that if < £ > m, in (8.33) we do not need to evaluate the enumerative bound,
since there is no hope for tightening the bound m,. A similar rule holds for (8.34) when
“Z—;C > my. Both rules may save a considerable amount of computational time.
Computational experiments have shown, that the bounds (8.33) and (8.34) are able
to tighten the bound on item type ¢ by 10% more than the bounds (8.23) and (8.24).
For practical purpose, the simpler bounds may be more useful, especially since they are
evaluated in constant time. This chapter is however focused on determining the smallest
possible core in order to get a tight bound on the enumeration.

8.7. SOLUTION VECTOR 139

8.7 Solution vector

Any state (m;, i;) in the dynamic programming should not only contain the profit and
weight sum, but also the corresponding solution vector x. Pisinger [82] noticed that
since only a few item types around b are modified during the solution process, storing a
complete solution vector x would be too comprehensive. Instead only the last a changes
in the solution vector are saved. When an optimal solution is found, we reconstruct the
solution vector. If more than a changes were made, we have to solve a new (smaller)
problem to find the remaining vector. The process is eventually repeated. In this way, we
get a space bound O(c) for the algorithm, but need to solve up to O(n) problems. For a
complete description of the technique see Pisinger [67].

8.8 Computational experiments

The presented algorithm has been implemented in ANSI-C, and a complete listing is
available from the author on request. The following results have been achieved on a
HP9000/730 computer.

We will consider the most common randomly generated data instances from the liter-
ature: Uncorrelated data instances: p; and w; are randomly distributed in [1, R]. Weakly
correlated data instances: w; randomly distributed in [1, R] and p; randomly distributed
in [w; — R/10,w; + R/10] such that p; > 1. Strongly correlated data instances: w;
randomly distributed in [1, R] and p; = w; + 10. Subset-sum data instances: w,; ran-
domly distributed in [1, R] and p; = w;. The data range R will be tested with values
R =100,1000 and 10000, while the bounds m; are randomly distributed in [5, 10].

An exact description of how the instances are generated is given in Appendix A. Each
problem type is tested with a series of S = 200 instances, such that the capacity c of the
knapsack varies from 1% to 99% of the total weight sum of the items. This approach takes
into account that the running times depend on the chosen capacity as shown in Figure
8.1.

We will compare the presented BOUKNAP algorithm with the MTB2 algorithm by
Martello and Toth [53], which in the same paper is shown to be the most efficient of
several superior algorithms. The FORTRAN code for MTB2 has been obtained from [53].
Since MTB2 transforms the BKP to an equivalent 0-1 KP, instances larger than n = 50 000

Table I: Final core size, measured as |C| =t — s+ 1. Average of 200 instances.

Uncorrelated Weakly correlated Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 4 5 6 5 9 9 32 36 33 4 5 6
300 5 7 7 4 10 13 97 99 102 4 5 6
1000 4 8 10 4 9 16 287 296 311 4 5 6
3000 4 9 12 6 7 18 991 956 943 4 5 6
10000 4 6 15| 11 5 17 | 3142 3404 — 4 5 6
30000 7 5 15| 22 6 10 | 9282 9164 — 4 5 6
100000 | 18 5 11| 60 10 7129621 30080 — 4 5 6

140

Table II: Percentage of item types tested by the fathoming test. Average of 200 instances.

CHAPTER 8. A MINIMAL ALGORITHM FOR THE BOUNDED KP

Uncorrelated Weakly correlated | Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 | 65 88 91 | 40 95 97 | 86 90 91 | 13 16 20
300 | 40 84 88 | 14 86 98 | 87 86 87 6 7 8
1000 6 71 87 4 49 97 | 82 84 88 2 3 3
3000 2 51 84 2 13 92 | 87 86 86 1 1 2
10000 1 15 76 1 2 69 | 84 87 — 0 0 0
30000 0 3 59 1 0 24 | 84 85 — 0 0 0
100000 0 0 28 0 0 3| &4 85 — 0 0 0

Table III: Efficiency of the fathoming test in percent. Average of 200 instances.

Uncorrelated Weakly correlated | Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 | 86 90 90 | 71 84 83 | 47 45 48 | 18 14 11
300 | 91 95 95 | 68 93 92 | 50 48 48 | 18 25 9
1000 | 85 98 98 | 57 95 97 | 52 53 53 | 16 22 11
3000 | 81 99 99 | 58 94 99 | 50 50 52 | 19 8 11
10000 | 71 99 100 | 17 91 100 | 52 48 — | 23 26 9
30000 | 36 97 100 | 10 76 100 | 53 54 — | 15 10 17
100000 | 71 85 100 | 15 74 99 | 54 54 — | 14 21 8

“—” means, that

cannot be solved due to memory limitations. In the following tables a
the 200 instances could not be solved in totally 10 hours.

First, Table I shows the average core size for each problem type, as obtained by
BOUKNAP. It is seen that only a couple of item types need to be enumerated in order
to solve the problem to optimality. However the strongly correlated instances demand a
considerable enumeration. The core sizes are minimal in the sense, that for each instance
one cannot find any subset of the core, such that the problem is solved to proven optimality
by considering only the items in the core.

Table II gives the percentage of items, which are tested by the fathoming test (8.20).
We observe that for large data instances, only a minor part of the item types need to be
considered at all, proving the strength of the lazy reduction.

The next two tables show the efficiency of the presented reductions: Table IIT shows
the efficiency of fathoming test (8.20), by stating the amount of tested item types, which

Table TV: Efficiency £ of bound tightening, in percent. Average of 200 instances.

Uncorrelated Weakly correlated | Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 | 67 71 70 | 57 68 69 | 65 64 64 | 13 10 7
300 | 63 69 71| 38 68 72| 64 64 64 | 14 11 8
1000 | 37 70 71| 21 66 70| 64 65 66 | 12 11 6
3000 | 26 69 71| 13 52 73| 64 65 64 | 12 12 7
10000 | 16 56 75 6 20 73| 64 65 — | 12 12 7
30000 9 30 72 3 10 61 | 65 65 — | 13 11 7
100000 3 12 77 1 5 28 | 65 64 — | 11 12 8

8.8. COMPUTATIONAL EXPERIMENTS 141

Table V: Max number of states in the dynamic programming (in thousands). Average of
200 instances.

Uncorrelated Weakly correlated | Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 1 1 1 1 3 5 5 44 560 3 24 279
300 1 2 2 2 9 15 6 61 707 2 27 294
1000 1 7 7 3 16 21| 11 116 1022 3 28 290
3000 2 10 20 6 30 55 | 22 191 1788 4 39 261
10000 3 12 28 9 33 114 | 37 361 — 5 25 255
30000 4 17 83 | 26 46 199 | 80 555 — 4 29 257
100000 | 23 25 127 | 61 65 289 | 242 999 — 3 23 276

Table VI: Total computing time in seconds (BOUKNAP). Average of 200 instances.

Uncorrelated Weakly correlated Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 100 1000 10000 | 100 1000 10000

100 | 0.00 0.00 0.00 | 0.00 0.00 0.00 0.02 0.16 1.55 | 0.00 0.02 0.27
300 | 0.00 0.00 0.00 | 0.00 0.01 0.01 0.06 0.62 7.36 | 0.00 0.02 0.27
1000 | 0.00 0.01 0.01 | 0.00 0.01 0.03 0.22 224 25.70 | 0.00 0.02 0.28
3000 | 0.00 0.01 0.02 | 0.01 0.01 0.09 0.81 9.37 109.67 | 0.01 0.03 0.30

10000 | 0.01 0.02 0.06 | 0.02 0.03 0.16 3.03 39.71 — |1 0.02 0.04 0.30
30000 | 0.04 0.05 0.12 | 0.08 0.08 0.20 | 13.59 116.96 — | 0.056 0.06 0.31
100000 | 0.20 0.16 0.27 | 0.40 0.26 0.37 | 107.90 450.46 — | 0.17 0.19 0.45

were fathomed. The efficiency of the tightening of bounds (8.34) is given in Table IV as

t
- (mi — d,
g = Zomslmi —4) (8.36)

j=s m;

Finally Table V shows the maximum amount of states at any stage of the dynamic
programming. The number of states increases with larger data-range R and problem
size n. However due to the compact representation of the solution vector x, even large
strongly correlated instances may be solved.

The last two tables (Table VI and VII) compares the running times of BOUKNAP
with those of MTB2. Notice, that MTB2 has substantial stability problems for low-ranged
data instances even of relatively small size. Also subset-sum data instances show a few
anomalous occurrences. On the other hand BOUKNAP has a very stable behavior, solving

Table VII: Total computing time in seconds (MTB2). Average of 200 instances.

Uncorrelated Weakly correlated Strongly correlated Subset sum
n\R 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 | 0.00 0.00 0.00 | 0.00 0.01 002 | — — — | 0.00 0.02 0.15
300 | 0.01 0.01 0.01 | 0.00 0.03 0.06 | — — — | 0.00 — 40.96
1000 | 0.01 0.03 0.04 | 0.01 0.05 026 | — — — | 0.00 0.01 0.09
3000 | 0.02 0.05 0.14 | 62.58 0.04 057 | — — — | 0.01 0.02 0.10
10000 | 14.72 0.11 0.43 — 0.17 098 | — — — | 0.05 0.06 0.14
30000 — 031 1.09 — — 1.04 | — — — | 0.18 0.19 0.26
100000 — — — — — — | — — — — — —

142 CHAPTER 8. A MINIMAL ALGORITHM FOR THE BOUNDED KP

most instances within a fraction of a second. The strongly correlated instances demand
more computational time, but the effort grows linearly with the problem size n and the
data range R. In Appendix B, similar tests have been performed with m; randomly
generated in [50, 100]. The computational times for these instances even clearer show the
benefits of BOUKNAP.

It is interesting to compare Table VII with Table II, since MTB2 has the worst com-
putational times in those situations, where fewest items need to be considered in order
to solve the problem. This demonstrates that MTB2 does not fully utilize the benefits
of solving a core problem, since MTB2 frequently spends more time for solving the core
problem than a complete sorting and reduction would take.

8.9 Conclusions

We have presented a complete algorithm for the exact solution of the Bounded Knapsack
Problem, which has the time bound

O(n + min{myg - mgy1 - -my, |Clcloge}), (8.37)

where the term O(n) is dominant for small core sizes |C| = t — s + 1. This result is
strengthened by the fact that the presented algorithm enumerates the smallest possible
core. Since the reduction and sorting is done by need, these preprocessing steps are also
minimized, although they have lower priority than the enumeration.

Moreover we have demonstrated that the transformation approach which was proposed
by Martello and Toth [53] leads to hard data instances, even for relatively small instances.
The presented algorithm does not have these problems, and computational experiments
document, that BOUKNAP outperforms MTB2 for all kinds of randomly generated problem
types.

Finally it should be mentioned that BOUKNAP is well suited as an approximate al-
gorithm, since the enumeration may be abandoned when the global upper bound ugyp
differs less than a given threshold value from the current solution.

Appendix A: Generating test instances

In order to let other authors generate the same test instances as applied in Section 8.8,
we here include an algorithm for generating the test data.

The standard LRAND48 generator of the C library is used for generating pseudo-
random profits and weights. The LRAND48 generator is using the well-known linear
congruential algorithm, which generates a series of numbers X7, Xy, X3,... as

Xi+1 = (GXZ + d) mod m, (838)

where a = 25214903917, d = 11 and m = 2%8. The first 31 bits of the number are returned
for LRAND4S8. A seed s for the algorithm is given by procedure SRAND48 as:

X = s-2'% +13070. (8.39)

8.9. CONCLUSIONS 143

Table VIII: Checksums for optimal solutions given as 33, z; mod 1000.

Uncorrelated Weakly correlated | Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 | 715 95 435 | 893 695 148 | 510 871 835 | 692 311 400
300 | 263 897 650 | 823 404 45 | 856 910 286 | 436 438 514
1000 | 793 818 751 | 698 10 543 | 663 196 648 | 783 256 758
3000 | 692 161 184 | 699 735 33 | 369 864 251 | 959 734 761
10000 | 931 75 120 | 325 900 778 | 809 429 — |1 269 429 830
30000 | 347 958 62 | 337 267 927 | 132 662 — 1922 792 703
100000 | 515 904 833 | 748 897 214 | 407 922 — | 407 672 998

For a given data range R, bound range M, instance size n, and problem type ¢ (uc, wc,
sc, ss) we constructed S = 200 different data instances as follows:

procedure testinstance(n, M, R, t,1); { Generate test instance i, 1 <i < S}
W :=0; R := |R/10];
SRAND48(7); { Use i as seed for the sequence of random numbers }
for j:=1to n do
w; := (LRAND48 mod R) + 1;
m; := (LRAND48 mod M/2) + M/2;
case t of
uc: p; := (LRAND48 mod R) + 1;
we: pj :=w; — R’ 4+ (LRAND48 mod (2R' +1));
if (p; <0) then p, :=1; fi;
sc: pj := w; + 10;
581 Pj = Wy;
esac;
W =W +mjwj;
rof;
c:=|(ExW)/(S+1)];
if (¢ < R) then ¢:= R+ 1; fi;
for j:=1to ndo
if (m;w; > ¢) then m; := |c/w;]; fi;

rof;

Table IX: Checksums for applied capacities given as 3.7, ¢; mod 1000.

Uncorrelated Weakly correlated | Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 | 8 253 455 | 85 253 455 | 692 311 400 | 692 311 400
300 | 981 138 395 | 981 138 395 | 436 438 514 | 436 438 514
1000 | 848 95 634 | 848 95 634 | 783 256 758 | 783 256 758
3000 4 908 263 4 908 263 | 959 734 761 | 959 734 761
10000 | 898 295 741 | 898 295 741 | 269 429 — |1 269 429 830
30000 | 431 15 109 | 431 15 109 | 922 792 — 1922 792 703
100000 | 15 477 669 | 15 477 669 | 407 672 — | 407 672 998

144 CHAPTER 8. A MINIMAL ALGORITHM FOR THE BOUNDED KP

Table X: Number of iterations used for obtaining the solution vector. Average of 200
instances.

Uncorrelated Weakly correlated | Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 | 1.0 1.0 1.0 | 1.0 1.0 1.0 | 1.0 1.1 1.0 | 1.0 1.0 1.0
300 | 1.0 1.0 1.0 | 1.0 1.0 1.1 1.3 1.3 1.3 | 1.0 1.0 1.0
1000 | 1.0 1.0 1.0 | 1.0 1.1 1.3 1.9 1.8 19| 1.0 1.0 1.0
3000 | 1.0 1.0 1.1 | 11 1.0 14| 2.6 3.0 29| 1.0 1.0 1.0

10000 | 1.0 1.0 1.3] 1.5 1.0 1.5 | 2.8 5.1 — | 1.0 1.0 1.0
30000 | 1.2 1.0 1.2 | 1.8 1.1 1.2 | 2.9 7.6 — | 1.0 1.0 1.0
100000 | 1.6 1.0 1.1] 2.2 1.5 1.0 29 116 — | 1.0 1.0 1.0

The if -statement in the weakly correlated instances ensures that p; is a positive integer,
while the last lines of the algorithm ensures that m;w; < candm; > 1forallj =1,...,n.
Checksums of the optimal solutions and capacities are given in Table VIII and IX.

Appendix B: Additional computational results

In this section we bring the results of some computational experiments which did not fit
into the main section.

First, Table X brings the number of iterations, which are needed to define the complete
solution vector as described in Section 8.7. For easy data instances, less than two iterations
are needed on the average, meaning that there is a minimal overhead for this part of the
algorithm. For strongly correlated instances, up to a dozen iterations are needed, but still
less than 10% of the solution time is spent for reconstructing the solution vector.

Table XI shows the gap I" between the LP-optimal and the IP-optimal solution. Balas
and Zemel [4] showed that the hardness of a 0-1 Knapsack Problem depends on the
correlation and the gap I'. This explains that instances with coefficients generated in a
large range R, generally are harder to solve than the same instances where the coefficients
are generated in a small range, since the gap I' grows with increasing data range.

Finally Table XII and XIII shows the standard deviation on the running times of
BOUKNAP and MTB2. Apart from the strongly correlated instances — which apparently
have a very large variation in the running times — most of the variations are very small.

Table XI: Gap I' between LP-optimal solution and IP-optimal solution. Average of 200
instances.

Uncorrelated Weakly correlated | Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 | 2.8 357 364.2| 04 10.7 110.0| 4.5 5.0 4.7 | 0.0 0.0 0.0
300 | 1.1 154 153.7 | 0.1 3.6 51.5 | 4.5 4.6 48 | 0.0 0.0 0.0
1000 | 0.1 5.9 63.5 | 0.0 1.1 186 | 4.2 4.2 44| 0.0 0.0 0.0
3000 | 0.0 2.1 28.6 | 0.0 0.3 72| 4.6 4.7 44| 0.0 0.0 0.0
10000 | 0.0 0.5 9.7 | 0.0 0.1 23| 4.3 4.9 — | 0.0 0.0 0.0
30000 | 0.0 0.1 3.71 0.0 0.0 0.5 | 4.3 4.4 — | 0.0 0.0 0.0
100000 | 0.0 0.0 1.0 | 0.0 0.0 01| 41 4.2 — | 0.0 0.0 0.0

8.9. CONCLUSIONS 145

Table XII: Standard deviation computational times BOUKNAP. Average of 200 instances.

Uncorrelated Weakly correlated Strongly correlated Subset sum
n\ R | 100 1000 10000 | 100 1000 10000 100 1000 10000 | 100 1000 10000

100 | 0.00 0.00 0.00 | 0.00 0.00 0.01 0.02 0.20 2.35 | 0.00 0.02 0.26
300 | 0.00 0.00 0.00 | 0.00 0.01 0.01 0.06 0.74 8.80 | 0.00 0.02 0.24
1000 | 0.00 0.01 0.01 | 0.00 0.01 0.02 0.27 2.93 31.81 | 0.00 0.02 0.24
3000 | 0.00 0.01 0.01 | 0.01 0.01 0.06 0.87 11.21 133.46 | 0.00 0.03 0.25

10000 | 0.01 0.01 0.03 | 0.01 0.02 0.09 3.55 46.41 — | 0.01 0.02 0.24
30000 | 0.02 0.01 0.07 | 0.09 0.05 0.13 | 14.46 158.89 — | 0.01 0.02 0.25
100000 | 0.30 0.02 0.10 | 0.71 0.14 0.22 | 113.94 615.35 — 1 0.01 0.02 0.24

Table XIII: Standard deviation computational times MTB2. Average of 200 instances.

Uncorrelated Weakly correlated Strongly correlated Subset sum
n\ R 100 1000 10000 100 1000 10000 | 100 1000 10000 | 100 1000 10000
100 0.00 0.01 0.01 0.00 0.02 0.02 | — — — | 0.00 0.08 0.23
300 0.07 0.01 0.01 0.00 0.03 0.07 | — — — | 0.00 — 576.25
1000 0.01 0.02 0.04 0.04 0.05 0.26 | — — — | 0.00 0.01 0.10
3000 0.01 0.03 0.14 | 631.67 0.03 0.60 | — — — 1 0.00 0.01 0.13
10000 | 205.07 0.04 0.39 — 0.73 091 | — — — | 0.00 0.02 0.12
30000 — 0.07 0.86 — — 140 | — — — 1 0.01 0.03 0.13
100000 — — — — — — | — — — — — —

However MTB2 has a very large variation at the anomalous occurrences, showing that it
is only a few instances, which takes up almost all the computational time.

Data instances, where the bounds m; are distributed in [50,100], are considered in
Table XTIV and XV. Solution times for both of the algorithms are given for the data ranges
R =100 and R = 1000 (range R = 10000 causes overflow in the integer arithmetics).
As in the previous case, it is seen that MTB2 has several anomalous occurrences, even
for small-ranged instances. On the other hand BOUKNAP has a stable behavior, solving
all problems in a few seconds (apart from the strongly correlated instances). It should
especially be noted, that solving a BKP which involves up to 100000 items (1000 item
types with bounds up to 100) is considerably more efficient than solving a 0-1 Knapsack
Problem of similar size [82]. Thus in cases, where several items of same profit and weight
occur, a transformation from the 0-1 Knapsack Problem to a Bounded Knapsack Problem
will yield a considerable decrease in the computational times.

146

CHAPTER 8. A MINIMAL ALGORITHM FOR THE BOUNDED KP

Table XIV: Total computing time in seconds (BOUKNAP) when m,; is

[50, 100]. Average of 200 instances.

distributed in

Uncorrelated | Weakly corr. | Strongly corr. | Subset sum

n\ R | 100 1000 | 100 1000 100 1000 | 100 1000
100 | 0.00 0.00 | 0.00 0.01 0.04 049|003 0.34
300 | 0.00 0.01 | 0.01 0.03 0.15 1.88 | 0.03 0.33
1000 | 0.00 0.01 | 0.01 0.06 062 6.42 | 0.03 0.34
3000 | 0.01 0.03 | 0.02 0.09 2.96 20.55 | 0.04 0.31
10000 | 0.03 0.07 | 0.13 0.14 | 23.09 — | 0.06 0.38
30000 | 0.16 0.12 | 0.51 0.24 | 175.71 — 1 0.07 0.37
100000 | 1.05 0.29 | 3.78 0.58 — — 1 0.20 0.57

Table XV: Total computing time in seconds (MTB2) when m; is distributed in [50, 100].
Average of 200 instances.

Uncorrelated | Weakly corr. | Strongly corr. | Subset sum

n\ R | 100 1000 100 1000 | 100 1000 100 1000
100 | 0.00 0.01| 015 0.03| — — | 35.18 67.45
300 | 0.22 0.02 | 046 0.06 | — — — —
1000 | 0.02 0.05 | 41.36 0.07 | — — | 0.01 0.02
3000 | 0.04 0.09 — 033 | — — | 0.03 0.03
10000 | 0.95 0.22 — 022 — — | 0.10 0.12
30000 — 0.55 — 561 | — — | 033 034

100000

Chapter 9

Dominance Relations in Unbounded
Knapsack Problems

The Unbounded Knapsack Problem (UKP) is a generalization of the 0-1 Knap-
sack Problem where an unlimited amount of each item type is available. In any
efficient algorithm for UKP the reduction of dominated item types plays a central
role, as the size of an instance may be decreased considerably this way. Traditionally
the dominance test has been based on a sorting of the item types according to non-
increasing profit-to-weight ratios, but a faster reduction may be obtained by sorting
according to nondecreasing weights, since then the so-called quotient jumping tech-
nique may be applied. Computational experiments are provided to demonstrate the
efficiency of the presented algorithm.

Keywords: Knapsack Problem, Dominance Relation.

9.1 Introduction

The Unbounded Knapsack Problem (UKP) is defined as

maximize Z Dix;
j=1

n
subject to Y w;z; <, (9.1)
j=1
z; > 0, integer, j=1,...,n,

where (p;,w;) are the profits and weights of the item types, and c is the capacity of the
knapsack.

The UKP is N'P-hard, but it may be solved in pseudo-polynomial time through dy-
namic programming [53]. The problem has several applications in financial management,
cargo loading and cutting stock, and it appears also by surrogate relaxation of IP problems
with nonnegative coefficients. The Unbounded Knapsack Problem may be transformed
to a Bounded Knapsack Problem by imposing the constraint z; < |¢/w;| for each vari-
able considered, but according to Martello and Toth [53], algorithms for the Bounded
Knapsack Problem perform rather poorly for instances of this kind.

147

148 CHAPTER 9. DOMINANCE RELATIONS IN UNBOUNDED KP

Dudzinski [18] has shown that several frequently occuring instances of the UKP may
be reduced to less than a dozen item types by a preliminary dominance based reduction,
and Martello and Toth [53] presented a branch-and-bound algorithm for the exact solution
of the remaining problem.

Since a majority of the computational time is spent for the reduction, this chapter is
focused on two aspects of the reduction: We want to develop faster reduction algorithms
than those previously published, and we will identify classes of instances, which cannot
be reduced as efficiently as demonstrated in [18,54], thus opening up for further research
in the design of algorithms for UKP.

In Section 9.2 we introduce several reduction algorithms from the existing literature
as well as of novel origin. Choosing the dominance reduction by Martello and Toth
[63] for further consideration, we develop a fast reduction algorithm in Section 9.3, and
experimentally compare it to previously published algorithms in Section 9.4. The chapter
is finally ended with a conclusion in Section 9.5.

9.2 Reduction algorithms

An efficient way of solving UKP is to first apply some dominance relations to fathom
infeasible item types, and then to solve the remaining problem through enumerative tech-
niques. The general form of dominance is defined as follows:

Definition 9.1 Given an item type j, and a set of item types 41,...,1q where 7, # j for
k=1,...,d, but where the indices {i;} are not necessarily distinct. If
Piy + .-+ Diy 2 Dj (9.2
wi1+...+wid§wj (93)

then item type j is said to be dominated by item types 11, ..., i4-

Obviously a dominated item type 7 may be fathomed from the problem, as any optimal
solution with z; > 0 may be replaced by a solution where the same amount of types
i1,...,% are chosen instead.

A complete testing of dominance is however computationally very expensive, so in the
following we will restrict the discussion to the case where iy,... 7, all are same. The
tightest choice of d in this case is d = |w;/w;| as this results in the largest left side of
(9.2) still satisfying constraint (9.3).

Definition 9.2 For two given item types i, j where ¢ # j, we say that type j is dominated
by type 7 if

w .
This dominance was introduced by Martello and Toth [54].

Martello and Toth give an efficient algorithm for reducing the dominated items by first
sorting the items according to their profit-to-weight ratios

Piy Pit g -1, (9.5)

- bl

Wi Wi+

9.3. IMPROVED REDUCTION 149

breaking ties such that w; < w;;. Then the following algorithm is performed:

Algorithm MT
m:=n;
for i :=1 to m do
for j:=7+4+1to mdo
if |w;/w;|p; > p; then fathom type j

where the number of undominated item types m is decreased each time an item type
j is fathomed. Due to the sorting, Algorithm MT has the complexity O(nlogn + mn),
thus if m is large we get the bound O(n?) which is the best obtainable, as for the so-
called subset sum data instances, Definition 9.2 corresponds to a divisibility test of the
n weights. In situations where m is much smaller than n, the sorting however takes a
majority of the solution time, thus resulting in an empirical solution time of O(nlogn).
Therefore Dudzinski [18] proposed an O(mn) algorithm based on the observation that
the dominance relation (9.4) is a partial ordering, making it possible to use techniques
by Polak and Payne [86] and Majchrzak [45] for eliminating dominated items without
sorting. The algorithm of Dudzinski repeatedly finds an undominated item type 7, and
fathoms all item types dominated by ¢ in linear time as follows:

Algorithm MN
m:=n;
for i :=1 to m do
for j:=i+1tomdo
if |w;/w;|p; > p; then swap(i, j);
for j:=74+1to mdo
if |w;/w;|p; > p; then fathom type j

where m is decreased each time an item type j is fathomed. As we do not demand any
sorting of the item types in Algorithm MN, it is more efficient than Algorithm MT when
m < logn.

9.3 Improved reduction

The sorting according to nondecreasing profit-to-weight ratios (9.5) plays a central role
in the solution of several Knapsack Problems. However when considering dominance
relations for the UKP, faster algorithms may be obtained by sorting according to nonde-
creasing weights w;.

Proposition 9.1 Algorithm MT works equally well with the item types ordered according
to nondecreasing weights (breaking ties such that p; > p;i1).

Proof Condition (9.4) never holds if w; > w; or if w; = w; and p; < p;. O

As a matter of fact, we only need to sort according to nondecreasing weights, as ties may
be broken afterwards in linear time by the following algorithm:

150 CHAPTER 9. DOMINANCE RELATIONS IN UNBOUNDED KP

Algorithm PREP
m:=1;
for j:=2to ndo
if (p; > pm) then
if (w; # wy,) then m :==m + 1;
swap(j, m);

As the weights are increasing, we only have to ensure that the profits also are increasing
as otherwise item type j is dominated by type m. Ties w; = w,, are handled such that if
pj > P then item type j dominates type m and thus overwrites it.

We define the quotient d;; = |w,/w;] for item types i < j. Due to the ordering of the
weights an obvious consequence of the definition is

Proposition 9.2 The values d;; satisfy that d;; > d;11; and d;; < d; j41. Thus they are
decreasing for increasing 4, and increasing for increasing j.

Proposition 9.3 If several item types 71, ..., 7, have the same quotient d;; for a fixed j
then only the last item type 5 is tight, meaning that we only need to consider ¢, when
testing for dominance.

Furthermore item types 7 with d;; = 1 need not to be considered at all as they will
never dominate item j.

Proof As both the profits and weights are increasing for the considered indices %1, . . ., iy,
we obtain the largest value of d;;p; for index 5, when demanding d;;w; < w;. Thus if
condition (9.4) does not hold for i, then it will neither hold for iy, ..., 4,_1.

The second part of the proposition is a consequence of the increasing profits, thus for
dij =1 we get dijpi < p; as 1< . 0O

For a given item type j let E& denote the index of the tight item type corresponding to

the quotient d
wj

] > d}. (9.6)

Proposition 9.4 The values E& have the property that E& > Eﬂ +1 and Eﬂ < Effl, i.e. they
are decreasing for increasing d, and increasing for increasing j.

b= {ma.xi L
i<y w;

Example 9.1 The current undominated item types are given in Table I, and we are
testing the dominance of type (pj, w;) = (32,30). Only item types i = 1, 2,5, 8 are tight,
and thus need to be considered due to Proposition 9.3. We find that item type i = 8
dominates type j, and thus fathom the latter.

Table I: Undominated item types when reducing (p;, w;) = (32, 30)

(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

pi |4 5 7 8 9 10 12 16 17 19 22 25 28 30 31

w; |5 7 8 9 10 12 13 15 18 19 21 24 26 27 28
6 4 3 3

dij 3 2 2 2 1 1 1 1 1 1 1

9.3. IMPROVED REDUCTION 151

For practically occurring data instances, we may assume that the weights are distributed
in a limited interval [R;, Rp], thus there cannot be more than D = |Ry/R;| different
values of d;;. By saving the values K& from the previous reduction of an item type j, we
may obtain an O(Dn) reduction algorithm as follows:

For each item type j = 2,...,n we test whether one of the preceding undominated item
types ¢ = 1,...,m dominates j. Thus for each pair 4, j we find the quotient d = |w;/w;],
and use it for deriving the index of the tight item ¢; from last iteration. If /; > i we
may immediately jump forward to ¢ = ¢4, as d;; = d for the intervening indices due to
Proposition 9.2. Now either 7 is tight, or we move ¢; forward till it becomes tight as
sketched in the following algorithm:

Algorithm MIN
m = 1;
for i :=1to D do ¢; := 0;
for j:=2to n do
{ place j right after the undominated item types }
swap(j,m + 1);
for 7 :=1 to m do
d = Ly /w);
{ type j is not dominated when d =1}
if (d = 1) then m := m + 1; break; fi;
{ quotient jumping}
if (¢4 > 1) then i :=/, else {, := i; fi;
{ test if j is dominated by i }
if (d- p; > p;) then break; fi;

As we only consider each item type j once, and since ¢ runs through the set of undominated
item types bounded by m, the time complexity is O(mn). Moreover the quotient jumping
technique yields the bound O(Dn) since each iteration of the inner loop may be considered
as one of the following steps:

a) The index ¢, is tight for the current value of d. There are at most D tight dominance
tests for each item type j, yielding the complexity O(Dn).

b) Index ¢; is not tight so we are moving the pointer forward. There are at most D
pointers ¢4, and each can be moved at most m steps, yielding the bound O(Dm).

Thus Algorithm MIN has the time complexity O(min(mn, Dn)). Notice, that if D is large,
we do not have to save all values of /;. Computational experiments indicate, that about
100 values yield the best performance. In this case the quotient jumping line of Algorithm
MIN should be preceded with a test whether d < 100.

Example 9.2 In continuation of Example 9.1, Table IT shows the dominance test of the
next item type (p;, w;) = (33, 32). The index ¢5 = 1 is unchanged from previous reduction,
while ¢, has to be iterated forward to ¢, = 3. The final indices /3 = 5 and ¢y = 8 are
unchanged. Thus the inner loop of Algorithm MIN has to be executed five times in order
to prove that the item type j is not dominated.

152 CHAPTER 9. DOMINANCE RELATIONS IN UNBOUNDED KP

Table II: Undominated item types when reducing (p;, w;) = (33, 32)
1|1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
pi |4 5 7 8 9 10 12 16 17 19 22 25 28 30 31
w; |5 7 8 9 10 12 13 15 18 19 21 24 26 27 28
;|6 4 43 3 2 2 2 1 1 1 1 1 1 1

A nice property of Algorithm MIN is that only O(n) copyings of the items are performed.
Both algorithm MT and MN need O(mn) copyings of the item types. Moreover Algorithm
MIN only needs one array for the items, as dominated item types are swapped to the end
of the array, and thus preserved.

We end this section with a final refinement: Numerous results from the solution of 0-1
Knapsack Problems have shown that a heuristic reduction of the item types, before the
sorting, may bring the solution times down to linear time for easy data instances. Thus
we choose the element b with the largest profit-to-weight ratio and use it for reducing the
remaining item types in O(n). The undominated items are then sorted and reduced by
Algorithm PREP and MIN. This results in the following algorithm:

Algorithm PMIN

find the item type b with largest profit-to-weight ratio,
braking ties such that b has the smallest weight.

remove item types dominated by type b.

sort the remaining items according to nondecreasing weights.

procedure PREP removes trivially dominated item types.

procedure MIN completes the reduction.

9.4 Computational experiments

Both Martello and Toth [54] and Dudziriski [18] remark that “the number of undominated
item types is always very small and grows slowly with n”. However this property only
holds if the weights are distributed in [R;, Ry] where R; is very small (both references
use R; = 10). Thus to get a better impression of the algorithms we test with varying
values of Ry, while Ry is chosen large in order not to favorize the O(Dn) algorithm. We
also consider the so-called subset-sum problems which till now have not been considered
in the literature of UKP.

We construct the data instances in the following way: The weights w; are randomly
distributed in [R;, Rs], while the distribution of the profits depend on the problem type
as follows. Uncorrelated data instances: p; are randomly distributed in [1, Ry]. Weakly
correlated data instances: p; is randomly distributed in [w; — 100, w;+100] such that p; >
1. Strongly correlated data instances: p; = w;+100. Subset-sum data instances: p; = w;.
All the presented algorithms have been implemented in C, and run on a HP9000/730.

Table III gives the average solution times for each of the algorithms MT, MN and PMIN
when reducing n = 100000 item types. It is seen that for easy instances, MT spends
most of the time on sorting the item types, meaning that algorithm MN is about five

9.4. COMPUTATIONAL EXPERIMENTS

153

Table III: Solution times in seconds, weights w; randomly distributed in [R;, Ry,
Ry = 30000. Average of 20 instances.

type Ry m MT MN PMIN
1 1 1.09 0.16 0.08

3 2 1.09 0.17 0.10

10 3 1.12 0.20 0.12

30 4 1.15 0.22 0.15

Uncorrelated 100 5 1.14 0.22 0.15
300 7 1.15 0.22 0.15

1000 8 1.15 0.22 0.15

3000 9 1.15 0.22 0.15

10000 9 1.15 0.23 0.15

1 2 1.09 0.16 0.09

3 2 1.09 0.17 0.10

10 4 1.12 0.19 0.11

30 6 1.14 0.22 0.15

Weakly corr. 100 16 1.15 0.22 0.15
300 46 1.16 0.24 0.15

1000 152 1.56 0.51 0.22

3000 465 6.92 2.88 0.54

10000 | 1751 | 73.09 23.29 0.62

1 1 1.06 0.15 0.08

3 3 1.09 0.17 0.10

10 10 1.09 0.21 0.10

30 29 1.13 0.22 0.15

Strongly corr. 100 98 1.16 0.26 0.15
300 290 1.36 0.53 0.16

1000 969 5.04 3.85 0.23

3000 | 2924 | 51.78 35.37 0.59

10000 | 9932 | 481.27 534.39 0.65

1 1 1.07 0.15 0.09

3| 3197 | 29.26 58.21 0.98

10 | 3287 | 40.14 96.26 1.73

30 | 3392 | 48.03 115.60 2.78

Subset sum 100 | 3688 | 64.63 144.16 3.33
300 | 4938 | 108.60 246.68 1.62

1000 | 7014 | 211.75 476.83 0.95

3000 | 10127 | 400.32 871.66 0.75

10000 | 14933 | 809.32 1572.60 0.66

154 CHAPTER 9. DOMINANCE RELATIONS IN UNBOUNDED KP

Table IV: Remaining number of item types m’ after heuristic reduction, compared to
final number of item types m. Weights w; randomly distributed in [R;, Ry], R, = 30 000.
Average of 20 instances.

!

type Ry m m
1 1 1

3 2 3

10 3 7

30 4 15

Uncorrelated 100 5 19
300 7 40

1000 8 95

3000 9 128

10000 9 300

1 2 4

3 2 6

10 4 10

30 6 21

Weakly corr. 100 16 111
300 46 1202

1000 152 16377

3000 465 83308
10000 | 1751 98487

10 10 31

30 29 99

Strongly corr. 100 98 338
300 290 2006

1000 969 18917

3000 | 2924 86619

10000 | 9932 99482

3| 3197 66683

10 | 3287 89979

30 | 3392 96667

Subset sum 100 | 3688 99000
300 | 4938 99669

1000 | 7014 99901

3000 | 10127 99967

10000 | 14933 99990

9.5. CONCLUSION 155

times faster. The difference is however not as large as reported in Dudzinski [18] due to
hardware differences as Dudzinski uses a PC for his computational experiments (The PC
is very slow at comparing floating-point numbers, thus showing a large gain by avoiding
the preliminary sorting). The preprocessing of PMIN means that only a few items need to
be sorted, implying that PMIN has a solution time comparable to MN for easy instances.

For hard instances, where m is large, the performance of MT and MN interchanges. Now
MT runs faster, as the sorting of the item types means that more types may be removed in
the first iteration. Algorithm PMIN is however clearly superior to the other algorithms, as
the two time bounds O(mn) and O(Dn) complement each other well: When R; is small,
m generally also is small, while if R; is large, D becomes small. Thus the worst solution
times are seen for medium sizes of R;.

For several of the considered instances, the number of undominated item types is
considerably larger than reported by Martello and Toth [54] and Dudzinski [18], as these
references only consider instances with R; = 10. The behavior of exact algorithms for
instances where m is large has still not been considered.

Finally Table IV gives the efficiency of the heuristic reduction with item type b. Thus
the column m' gives the number of remaining items that need to be sorted by Algorithm
PMIN. It is seen that for easy data instances, this heuristic reduction is almost as efficient
as a complete reduction, since m' generally is close to m. This means, that in some
applications, a heuristic reduction may be sufficient. However for hard instances, like the
strongly correlated and subset-sum instances, a complete reduction is still beneficial.

9.5 Conclusion

We have presented a dominance based reduction algorithm for UKP, which has the time
bound O(nlogn + min(mn, Dn)), where D = | Ry/R; |. Computational experiments have
demonstrated a superior performance even for large values of Ry. However for exponen-
tially growing weights, all the presented algorithms degenerate to time complexity O(n?),
which is the best obtainable.

It has been proved that a sorting of the item types according to weights is equivalent
to the sorting according to profit-to-weight ratios (while sorting according to profits is a
third variant). Ties in the sorting of weights do not need to be handled in any specific
way, as they may be treated in O(n) time after the sorting.

We have identified non-trivial data instances for UKP by increasing the lower bound
R, on the weights. It would be interesting to compare exact solution algorithms when
applied to these instances.

Finally we have introduced the most general form of dominance relations for UKP.
Efficient algorithms for this reduction are open for future research.

156 CHAPTER 9. DOMINANCE RELATIONS IN UNBOUNDED KP

Chapter 10
Subset-sum Problems

The Subset-sum Problem (SSP) is the problem of choosing a subset of the weights
W1, - - . , Wy, Such that the total sum is maximized without exceeding a given capacity
c. Assuming that the weights are bounded by a constant r, it is well known that
SSP may be solved in O(n?r) time through dynamic programming. However if we
only consider the “balanced” states in the dynamic programming, an algorithm with
linear time bound O(nr) is derived.

Keywords: Subset-sum Problem, Dynamic Programming.

10.1 Introduction

The Subset-sum Problem (SSP) is the problem of choosing a subset of the weights
wiy, ..., w, such that the total sum is maximized without exceeding the capacity c. It
may be formulated as the following maximization problem

n
maximize 2z = Z w;T;
=1

n

subjet to > w;z; <, (10.1)
7j=1
z;€{0,1}, j=1,....n,

where all weights w; and the capacity c are positive integers. To ensure nontrivial problems
we will assume that >°7_; w; > ¢, and that w; < cfor j =1,...,n.

The Subset-sum Problem may be considered as a special case of the 0-1 Knapsack
Problem, where the profit p; equals the weight for each item. In spite of this restriction
SSP has numerous applications: Diffe and Hellman [17] designed a public cryptography
scheme whose security relies on the difficulty of solving the SSP problem, while Dietrich
and Escudore [15,16] developed a procedure for strengthening LP bounds in general integer
programming based on SSP problems. According to Martello and Toth [50] SSP can also
be applied for solving cargo loading, cutting stock and two-processor scheduling problems.

Although SSP is N'P-hard [53] it is well known that the problem may be solved in
psudo-polynomial time through dynamic programming. Let f;(¢), (0 <i<n, 0<é<¢)

157

158 CHAPTER 10. SUBSET-SUM PROBLEMS

be an optimal solution value to the subproblem of SSP, which is defined on items 1,...,1¢
with capacity é. Then the recursion by Bellman [5] is

_J fiea(©) for ¢=0,...,w;—1

fi(e) = { max{ fi_1(¢), fi_1(¢ —w;) +w;} for é=w;,...,c (10.2)

while we set
fo(¢)=0 for ¢=0,...,c. (10.3)

In this way we obtain the time and space complexity O(nc). If the weights w; are bounded
by a fixed constant 7, the complexity may be written O(n?r), which has been accepted as
a de facto minimum for several decades. A linear time algorithm running in O(nr) may
however be obtained by considering only the so-called “balanced” states in the dynamic
programming. In Section 10.2 we will introduce the concept of balanced operations and
balanced fillings, while Section 10.3 brings an iterative algorithm with time and space
bound O(nr). Section 10.4 shows how this algorithm may be changed from dynamic pro-
gramming by pulling to dynamic programming by reaching, and Section 10.5 shows some
computational experiments with hard data instances. Finally Section 10.6 generalizes the
algorithm to knapsack problems, where an O(nr?) algorithm is obtained.

10.2 Balanced operations

We define the break item b as the first item which does not fit into the knapsack, when

including the items successively 1,2,.... Thus we have
b—1 b
Yw;<e< > wy, (10.4)
7j=1 7=1

The break solution x' is the feasible solution which occur by including items up to b in
the knapsack, thus 2%, =1, j =1,...,b—1and 2; = 0, j = b,...,n. The weight sum
corresponding to the break solution is denoted by w. We will use the symbol z* for an
optimal solution to SSP, and define the range r as the largest of the weights wq, ..., w,.

Pisinger [75] showed that any optimal solution to the 0-1 Knapsack Problem and thus
also to the SSP may be reached through a series of balanced operations:

Definition 10.1 A balanced filling is a solution x obtained from the break solution
through balanced operations as follows:
e The break solution z’ is a balanced filling.

e Balanced insert: If we have a balanced filling x with >°7_; w;z; < c and change a
variable z;, (t > b) from z; = 0 to x; = 1 then the new filling is also balanced.

e Balanced remove: If we have a balanced filling x with -7, w;z; > ¢ and change a
variable z,, (s < b) from z; = 1 to x; = 0 then the new filling is balanced.

Proposition 10.1 An optimal solution to (10.1) is a balanced filling, i.e. it may be
obtained through balanced operations.

10.2. BALANCED OPERATIONS 159

Proof Assume that the optimal solution is given by x*. Let si,...,s, be the indices
8; < b where zi, =0, and #y,...,¢g be the indices #; > b where x;. = 1. Order the indices
such that s, <--- <5 <b <t <+ <.

Starting from the break solution z = z’ we perform balanced operations in order to
reach z*. As the break solution satisfies that E _,w;z; < ¢ we must insert an item ¢y,
thus set 2, = 1. If the hereby obtained weight sum 7% ; w;z; is greater than ¢ we remove
item s; by setting z,, = 0, otherwise we insert the next item ¢,. Continue this way till
one of the following three situations occur:

1) All the changes corresponding to {si,...,s,} and {t1,...,%3} were done, meaning
that we reached the optimal solution z* through balanced operations.

2) We reach a situation where }-7_; w;x; > ¢ and all indices {s;} have been used
but some {¢;} have not been used. This however implies that z* could not be a feasible
solution from the start as the knapsack is filled and we still have to insert items.

3) A similar situation where >-7_; w;x; < c is reached and all indices {¢;} have been
used, but some {s;} are missing. This implies that z* cannot be an optimal solution, as
a better feasible solution can be obtained by not removing the remaining items s;. O

Actually we proved some more:

Corollary 10.1 An optimal solution may be obtained through balanced operations by
considering the indices {¢;} in increasing order, and the indices {s;} in decreasing order.

Corollary 10.2 Any balanced filling x satisfies c — r < 3°7_; wjz; <c+r.

Thus we may use the following recursion for finding an optimal solution to SSP: Let
fs(€), (s <b, t>b—1, c—7 < &< c+r) be an optimal solution to the subproblem of
SSP, which is defined on the variables : = s, ..., of the problem:

o1 w; + EJ s WiTj :

1wJ+Z sWiZi < C,
T, E {0,1} for j = s,...,1,
x is a balanced filling

fs4(€) = max (10.5)

As each iteration inserts an item ¢ > b or removes an items s < b, we may use the recursion

fs—1(¢) if ¢<e, t>b
~ fst 1(6 wt)—|-wt if 6—wt§0, tzb

Jsal@) = maxq g it &> s<b (10.6)
forip(€+ws) —w, if é4+ws>ec, s<b

while we set f,,_1(¢) = w for ¢ =w,...,c and fyp_1(¢) = —oo for all other values of ¢.

An optimal solution to (10.1) is thus found as f; ,(¢c). The complexity of solving recursion
(10.6) is however O(n?r): Although the number of possible capacities ¢ is bounded by 2,
it takes b(n — b) steps to reach fi, from fy, ;.

160 CHAPTER 10. SUBSET-SUM PROBLEMS

10.3 An iterative algorithm

In the following we will only consider those states (s, t, 1) where

i= foali), (10.7)

i.e. those weight sums g which can be obtained by balanced operations on zy, ..., x;. We
introduce the following dominance relation:

Definition 10.2 Given two states (s,t¢,) and (s, ¢/, p4/). If p=p', s > s and t < ¢/,
then state (s,t, 1) dominates state (s',t', 1').

Proposition 10.2 If a state (s,t,u) dominates another state (s',¢,u’) then we may
fathom the latter.

Using the dominance rule, we will enumerate the states for ¢ running from b — 1 to n.
Thus at each stage ¢ and for each value of u we will have only one index s, which actually
is the largest s such that a balanced filling with weight sum g can be obtained at the
variables zy, ..., z;. Therefore let s;(u) fort =b—1,...,nand c—r < p < c+ 1 be
defined as

there exists a balanced filling which satisfies

S

s¢(1) = max s Siw 4 Y wimy = (10.8)
Z; € {0,1}, j=s,...,t

where we set s;(¢) = 0 if no balanced filling exists. Notice that for £ = b—1 only one value
of sy(u) is positive, namely s;(w) = b, as only the break solution is a balanced filling. An
optimal solution to SSP is found as max{u : s,(u) > 0}.

After each iteration of ¢ we will ensure that all states are feasible by removing suf-
ficiently many items j < s;(u) for those states where p > c¢. Thus only states (s,t, u)
with 4 < ¢ need to be saved. But in order to improve efficiency, we use s;(u) for p > ¢
to remember that items j < s;(u) have been removed once before. This leads to the
following algorithm:

1 Algorithm NRSUB

2 for py:=c—r+1tocdo s, 1(p) := 0;
3 for u:=c+1toc+rdo sy_1(p) :=1;
4 sp1(wW) == b

5 fort:=btondo

6 for y:=c—r+1toc+rdo

7 st(p) == si—1(n);

8 for y:= cdownto c—r+1 do

9 po= gt wg;

10 se(p') == max{sy(1'), s:(1)};

11 for y:=c+ wy; downto c+ 1 do

12 for j := s;(u) — 1 downto s;_1(u) do
13 p= = wy;

14 se(u') := max{s,(u'), j};

10.3. AN ITERATIVE ALGORITHM 161

N W
O | o~

= Ot

&
o =
NG

\
/

no se-1(p) sv (1) So+1() Sb+2()
10 0 1 1 1
11 0 0 0 1
12 4 4 4 4
13 0 0 0 2
14 0 2 3 3
15 0 |c 0 0 4 |c
16 1 3 4 4
17 1 1 1 3
18 1 4 4 4
19 1 1 1 1
20 1 1 1 1
21 1 1 1 1

Figure 10.1: The items and table s;(u) for a given instance.

Algorithm NRSUB does the following: For ¢t = b — 1 we only have one balanced solution,
the break solution, thus s;(x) is initialized according to this in lines 2-4. The infeasible
states with p > ¢ are set to s;(p) =1 as no items j < s have ever been removed.

Now we consider the items ¢ = b,...,n in line 5-14. In each iteration item ¢ may be
added to the knapsack or omitted. Lines 6-7 correspond to the latter case, thus the states
si—1(p) are copied to s;() without changes. Lines 8-10 add item ¢ to each feasible state,
obtaining the weight p'. According to (10.8), s;(4') is the maximum of the previous value
and the current balanced solution.

In lines 11-14 we complete the balanced operations by removing some items j < s
from states with p > ¢. As it may be necessary to remove several items in order to
reobtain a feasible solution, we consider the states for decreasing p, thus allowing for
several removals.

Proposition 10.3 Algorithm NRSUB finds the optimal solution x*.

Proof We just need to show that the algorithm performs unrestricted balanced opera-
tions: 1) It starts from the break solution z’. 2) For each state with u < ¢ we perform a
balanced insert, as each item ¢ may be added or omitted. 3) For each state with y > ¢ we
perform a balanced remove by removing an item j < s;(u). As the hereby obtained state
has p' > ¢ we know that ' < g and thus additional removals will be accepted since line
11 considers the weights in decreasing order. This ensures that all states will be feasible
after an iteration of ¢.

The only restriction in balanced operations is line 12, where items j < s;_;(p) are not
removed. But according to the conventions we know that items j < s;_1(u) have been

162 CHAPTER 10. SUBSET-SUM PROBLEMS

removed once before, meaning that

si(p—w;) >3 for j=1,...,5-1(n). (10.9)
Thus repeating the same operations will not contribute to an increase in s;(y — w;). O
Proposition 10.4 The complexity of Algorithm NRSUB is O(nr) in time and space.

Proof Space: The array s;(u) has size (n — b+ 1)(2r), thus O(nr). Time: Lines 2 and
3 are executed r times. Line 7 is executed 2r(n — b+ 1) times. Lines 9-10 are executed
r(n — b+ 1) times. Finally for each p, lines 13-14 are executed totally s,(y) < b times.
Thus during the whole process lines 13-14 are executed at most 7b times. This proves the
bound O(nr). O

10.4 Dynamic programming by reaching

One drawback of the NRSUB algorithm is, that we use dynamic programming through
pulling, meaning that all 27 states are considered at each iteration. An algorithm based
on dynamic programming through reaching may be obtained by only considering those
states where s;(u) # 0 for p < ¢ and s(u) # 1 for p > ¢. A data structure should be
chosen which supports the basic operations SEARCH, INSERT, PREDECESSOR. Notice that
PREDECESSOR actually is necessary, as the states with p > ¢ have to be considered in
decreasing order.

It is possible to modify the NRSUB algorithm such that only the basic operations
SEARCH and INSERT are necessary. First assume that the items are ordered such that

ijU)b, j:1,...,b—1, (1010)
wj <wp, j=b+1,...,n, (10.11)
which is obtainable in time O(n), e.g. by using the PARTSORT algorithm by Pisinger [75].
The ordering means, that each time we add an item ¢ > b to a feasible solution, at most

one item s < b need to be removed in order to reobtain a feasible solution. This leads to
the following improved algorithm:

1 Algorithm NRSUB2

2 {sp1(p) =0 for p < ¢, and sp_1(u) = 1 for p > ¢ are not stored }
3 sp_1(w) == b;

4 fort:=btondo

5 forall p<ec, si_1(u) # 0 do si(p) == se—1(p);
6 for all u > ¢, s;—1(p) #1 do si(p) := sp—1(p);
7 for all p <e, s, 1(u) #0 do

8 W= pt wg;

9 se(p') == max{s, 1 (1), se-1(1)};

10 for all u > ¢, si(u) # 1 do

11 for j:=s;1(u) to s;(n) — 1 do

12 p= = wy

13 sy(p') == max{s;(¢'), j};

10.5. COMPUTATIONAL EXPERIMENTS 163

The basic change is, that the values p may be considered in an arbitrary order at each
stage of t. In lines 7-9 we avoid the risk of overwriting states by expressing s;(u') as the
maximum of states at stage ¢t — 1, and in lines 11-13 the ordering of the items ensures,
that only one item s’ need to be removed in order to obtain a feasible state.

Thus we only need to partition the states in those with u < ¢ and those with y > c,
while hashing may be used to access the states inside the loops. With an appropriate
hashtable, the basic operations SEARCH and INSERT may be performed in O(1).

10.5 Computational experiments

We consider five types of data instances, as presented in Martello and Toth [53]:

(i) Problems P(3):
w; randomly distributed in [1,10°%], and ¢ = [n10%/4].

(i1) Problems P(6):
w; randomly distributed in [1,10°%], and ¢ = [n10°/4].

(iii) Problems EVEN/ODD:
w; even, randomly distributed in [1,10%], and ¢ = 2|n10%/8] + 1 (odd).

(iv) Problems AVIS:
wj=n(n+1)+j,and c=n(n+1) |[(n—1)/2] +n(n—1)/2.

(v) Problems TODD:
set k = [logyn] then w; = 257 4 264 41 and ¢ = [§ X7, w;].

The problems P(3) and P(6) are randomly generated problems, while the remaining prob-
lems are constructed to satisfy some special properties. For the EVEN/ODD problems,
Jeroslow [40] showed that every branch-and-bound algorithm enumerates an exponen-
tially growing number of nodes in order to solve the problems to optimality. For the Avis
problems, Avis [3] showed that any recursive algorithm which does not use dominance will
perform poorly. Finally Todd [92] constructed the TODD problems such that any algo-
rithm which uses upper bounding tests, dominance relations, and rudimentary divisibility
arguments still will have to enumerate an exponential number of states.

The NRSUB algorithm has been implemented in C, and the test instances have been
solved on a HP9000/730. As the applied computer is 32-bit, several of the instances could
only be generated up to a limited size: P(6) up to n = 2000, AvIS up to n = 1000,
and TODD up to n = 20. We should however not expect any major improvement by the
presented algorithm for the TODD problems, as they have weights distributed in a very
large range 7.

The running times of three different approaches is compared: Table I gives the average
times for the Bellman recursion (10.2), while Table II gives the average times of the NRSUB
algorithm. These dynamic programming algorithms are compared to the MTSL algorithm
by Martello and Toth [53] which is based on branch-and-bound in connection with a
partial dynamic programming enumeration.

164 CHAPTER 10. SUBSET-SUM PROBLEMS

Table I: Solution times Bellman recursion (in seconds). Average of 100 instances.

n P(3) P(6) EVEN/ODD AVIS TODD
10 0.00 0.00 0.00 0.00 0.00

20 0.00 0.57 0.01 0.00 —

50 0.09 71.19 0.06 0.05 —
100 0.43 550.18 0.26 1.79 —
200 2.11 — 1.98 30.40 —
500 15.07 — 16.59 — —
1000 63.24 — 80.79 — —
2000 263.25 — 372.34 — —
5000 — — — — —
10000 — — — — —
20000 — — — — —
50000 — — — — —
100000 — — — — —

Table II: Solution times NRSUB (in seconds). Average of 100 instances.

n P(3) P(6) EVEN/ODD AVIS TODD
10 0.00 5.25 0.00 0.00 0.11

20 0.00 9.99 0.00 0.00 —

50 0.00 5.84 0.01 0.03 —
100 0.00 4.19 0.02 0.25 —
200 0.00 2.94 0.05 4.10 —
500 0.00 2.38 0.11 69.08 —
1000 0.00 2.11 0.22 572.31 —
2000 0.00 2.05 0.44 — —
5000 0.00 — 1.12 — —
10000 0.00 — 2.21 — —
20000 0.00 — 4.56 — —
50000 0.01 — 11.25 — —
100000 0.02 — 23.77 — —

Table III: Solution times MTSL (in seconds). Average of 100 instances.

n P(3) P(6) EVEN/ODD AVIS TODD
10 0.00 0.00 0.00 0.00 0.00

20 0.00 0.00 0.01 0.03 0.00

50 0.00 0.01 — — —
100 0.00 0.01 — — —
200 0.00 0.01 — — —
500 0.00 0.01 — — —
1000 0.00 0.01 — — —
2000 0.00 0.01 — — —
5000 0.00 — — — —
10000 0.00 — — — —
20000 0.00 — — — —
50000 0.01 — — — —
100000 0.02 — — — —

10.6. KNAPSACK PROBLEMS 165

For the randomly distributed problems P(3) and P(6) we have r bounded by a (large)
constant. Thus the Bellman recursion runs in O(n?) time, while NRSUB has a linear
solution time. The randomly distributed problems have the property that several solutions
to

Y wizj=c (10.12)
7j=1

do exist when n is large, thus generally NRSUB may terminate before a complete enu-
meration. The Bellman recursion has to enumerate all states up to at least ¢t = b before
it can terminate. The MTSL algorithm is however the fastest for these problems, as the
branch-and-bound technique quickly finds a solution to (10.12).

For the EVEN/ODD problems no solution to (10.12) do exist, meaning that here we
get a strict O(nr) and thus linear solution time for NRSUB. As r is moderate, even very
large instances may be solved fast. The Bellman recursion has an O(n’r) behavior, and
thus cannot solve problems larger than n = 2000. The worst results are seen for MTSL
where no problems larger than n = 20 can be solved.

The problems AVIS have weights of magnitude O(n?) while the capacity is of magnitude
O(n?). So the Bellaman recursion demands O(n*) time, while NRSUB solves the problem
in O(n®). Thus even reasonably large instances are solved by NRSUB. Algorithm MTSL
again cannot solve problems larger than n = 20.

Finally the TODD problems are considered. Due to the exponentially growing weights,
we are not able to generate instances of size lager than n = 20. We should however
not expect any seminal results for larger instances, as all the complexity is hidden in the
magnitude of the weights. The dynamic programming algorithms are not able to solve
problems larger than n = 10 while MTSL according to [53] is able to solve problems of size
n = 40.

10.6 Knapsack Problems

The 0-1 Knapsack Problem (KP) may be formulated as the following maximization prob-
lem
maximize 2z = ijxj
7j=1

subject to Y w;z; <c (10.13)
j=1
z; €{0,1}, j=1,...,n,

where all coefficients are positive integers.

Balas and Zemel [4] showed, that an efficient way of solving KP is to choose a “core”
of the items, and solve these as a subset sum problem in order to obtain a filled knapsack.
Theorem 3 of [4] shows, that the probability for such a heuristic solution to be optimal
is bounded below by a strictly increasing function Q(n) with lim, ., @(n) = 1. Thus
for large problems, solving the core problem with NRSUB will lead to an optimal solution
with a very high probabiliy.

166 CHAPTER 10. SUBSET-SUM PROBLEMS

Another approach is to construct a specialized algorithm for KP based on balanced
operations. Pisinger [75] proved that an optimal solution to KP may be obtained through
the same balanced operations as described in Section 10.2. Assume that the items are
ordered according to nonincreasing profit-to-weight ratios p;/w,, and let p, @ be the profit
and weight sum of the break solution 2’. Then the Dantzig [13] upper bound u is defined

as B
u= {p+ MJ . (10.14)
Wy
We have the invariant
there exists a balanced filling which satisfies
S ip+ Y px, =
se(pym) =maxs{ o T (10.15)

YT w4 Yo wimy = p
Z; 6{0,1}, j:S,...,t

where we set s;(u, 7) = 0 if no balanced solution exists. Notice that for ¢ = b—1 only one
value of s;(p,) is positive, namely s;(w,p) = b, as only the break solution is balanced.
As for SSP, let the range of the coefficients be given as 7y = max;—; . ,w; and ry =
max;—1,_.,P;j.- As a consequence of the balanced operations we have c — 7 < u < c+ry
and u — ro < ™ < u + ryo. Actually the last inequality may be tightened:
Using the bound by Dembo and Hammer [14] we notice that the upper bound of a
state (u,) cannot be larger than the Dantzig bound, thus

{w + MJ < u, (10.16)

Wy

implying

7 < op) = {u - (C_Tij)pr . (10.17)

On the other hand, if a state (u,) does not have an upper bound better than the current
solution z, then it may be fathomed. Thus any live state must satisfy

{w + MJ >z+1 (10.18)
Wy
leading to
T > Bp) = {z +1- %| . (10.19)
b

Thus at any stage we have a(u) < 7 < (i), meaning that the number of profit sums 7
corresponding to a weight sum p can at most be ¢ = u — z, where g < ry as we may use
the profit sum of the break solution p for z.

A generalisation of the NRSUB algorithm for Knapsack Problems may be sketched as
follows:

10.6. KNAPSACK PROBLEMS 167

1 Algorithm NR?KNAP

2 forpu:=c—r;+1tocdo

3 for 7 := a(u) to B(u) do

4 Sp—1(p,) := 0;

5 forpu:=c+1toc+r do

6 for 7 := a(u) to B(u) do

7 sp1(p,) == 1;

8 sp1(W,P) :=b;

9 fort:=btondo

10 for y:=c—r;+1toc+r; do

11 for 7 := a(u) to B(n) do

12 se(p) = se—1(1);

13 for p:=c—ri+1tocdo

14 for 7 := a(u) to f(u) do

15 P o=t we =T+

16 se(p', ') == max{s; 1 (W, 7"), sp_1(p, m)};
17 for p:=c+ w; downto ¢+ 1 do

18 for 7 := a(u) downto f(u) do

19 for j:= s;(u) — 1 downto s; 1(u) do
20 W= p—wy =1 — pj;

21 se(p, ') = max{s;(p', 7"), j};

The time and space complexity is O(nr;g) which may be verified as in Proposition 10.4.
As g < ry this may be written O(nr?) where r = max{ry, ro} is the largest profit or weight
in the instance.

The efficiency of NRSUB may be improved further by incorporating the following fath-
oming tests by Pisinger [75]: Given a state s;(u, 7). If we have

W+%SZ+1, for p<c
(!) (10.20)
C —_—

W+#SZ+1, for u>c
then the state may be fathomed. A further improvement is to apply dominance tests:

Definition 10.3 Given two states sy;(p1,71) and sy(ug, o). If sy(u1,m) > s¢(po, m2),

m > 79 and py < po then state sy(p1,m1) dominates state sy(uo, m2). A dominated state
may obviously be removed from the problem.

However algorithm NRSUB considers the states for decreasing weight sums p in line 17,
where efficient dominance tests demand that the states are considered in order of increas-
ing weight sums and decreasing profit sums.

An efficient way of incorporating dominance is to consider the inverse problem. Thus
at any stage we consider infeasible states with y > ¢, and (i, 7) gives the smallest index
such that a balanced solution with weight sum g exists. This algorithm is described in
Appendix A, where efficient dominance relations are incorporated.

168 CHAPTER 10. SUBSET-SUM PROBLEMS

10.7 Conclusion

By considering balanced states, the time bound on SSP has been improved from O(n?r)
to O(nr) for any fixed range r of weights. As the balanced operations have a natural
greedy nature, several problems can be solved with even less effort.

The time bound O(nr) fully describes the nature of the subset-sum problem, as it
clearly states that all the complexity is hidden in the magnitude of r. This conforms
with the observation by Chvétal [11] who used exponentially growing weights in order to
construct hard instances of SSP.

The computational experiments have demonstrated that even very hard instances of
large size may be solved in reasonable time by using NRSUB. However for instances with
exponentially growing weights, there is no improvement, as could be expected from the
time bound. The algorithm is almost trivial to implement, so also from a practical point
of view the results are of major importance.

The presented results have been generalized to the 0-1 Knapsack Problem where an
O(nr?) algorithm has been presented. Although this is a linear-time algorithm for any
fixed range 7, this result is of minor importance, as r? generally grows fast. It may however
have applications for large sized problems with coefficients generated in a small range.

As several approximate algorithms for the subset-sum and knapsack problem are based
on dynamic programming, Matteo Fischetti at [79] mentioned that the presented algo-
rithms may also lead to improved approximate algorithms.

Appendix A: Inverse Knapsack Algorithm

As mentioned in Section 10.6, efficient dominance relations may be incorporated in the
NR?KNAP algorithm if we consider the inverse problem: Thus at any stage we only consider
infeasible states, as this allows us to run through the weights in increasing order. We have
the invariant

there exists a balanced filling with
1P Ko piT =T
1wy X wiTy = p

z; € {0,1}, j=s,...,t

ts(p, ™) = mint (10.21)

where we set t5(u, 7) = n + 1 if no balanced solution exists. Due to the dominance, we
have

ts(p,m) <min{ts(p—1,7), ts(p,m+ 1)}, (10.22)

where we assume that ts(u,7) = n+ 1 when # > 3(u). This leads us to the following
algorithm

10.7. CONCLUSION 169

1 Algorithm NRZ2KNAP2

2 for y:=c+1to c+r {initiate } do

3 for 7 := f(u) downto a(i) do

4 ty(p,) :=n+ 1; { no balanced solution }

5 for p:=c—r+1tocdo

6 for 7 := f(u) downto a(p) do

7 ty(u,) := n; { only remove after n }

8 (W, p) := b — 1; { initial balanced solutions }

9 for j :=n downto b do

10 (W + w;j, D+ pj) = 7;

11 for s :=b—1 downto 1 do

12 for p:=c—r+1to c+r do {copy states with dominance }
13 for 7 := f(y) downto a(u) do

14 ts (:u'7 7T) = min{tS-l—l (:u'7 7T): ts—l—l(u - 17 7T)7 t8+1(:u7 T+ 1)};
15 for y:=cto c+r do {remove item s}

16 for 7 := f(u) downto a(u) do

17 ,U'I = W u =T = Pss

18 ts(p', ') i= min{t, (1, '), ts(p, ™)}

19 for y:=c— ws to ¢ do { add item t }

20 for 7 := f(u) downto a(u) do

21 ts(p,) = min{ts(p, 7), ts(u — 1,7), ts(u,m+1)};

22 tsi1(p, m) := min{ts 1 (p,), ts(p—1,7), ts(pu,m+1)};
23 for j:=t,(u,7)+ 1 to ts11(p,) do

24 o= ptwy; =T+ pj;

25 ts(p', 7") = min{t, (1, 7"), j};

Despite the dominance relations, all states have to be considered in the inner loops.
Thus basically we only get a saving in the loop where items ¢ > b are added. To get
the full benefit of the dominance, the above algorithm must be changed from dynamic
programming by pulling to dynamic programming by reaching.

170 CHAPTER 10. SUBSET-SUM PROBLEMS

Chapter 11

An exact Algorithm for large
Multiple Knapsack Problems

The Multiple Knapsack Problem is the problem of choosing a subset of n items
to be packed in m distinct knapsacks, such that the total profit sum of the selected
items is maximized, without exceeding the capacity of each of the knapsacks. The
problem has several applications in naval as well as financial management.

A new exact algorithm for the Multiple Knapsack Problem is presented, which
is specially designed for solving large problem instances. The recursive branch-and-
bound algorithm uses surrogate relaxation for deriving upper bounds, and lower
bounds are obtained by splitting the surrogate solution into the m knapsacks by
solving a series of Subset-sum Problems. A new separable dynamic programming
algorithm is presented for the solution of Subset-sum Problems, and we also use this
algorithm for tightening the capacity constraints in order to obtain better upper
bounds.

The developed algorithm is compared to the MTM algorithm by Martello and
Toth, showing the benefits of the new approach. A surprising result is, that large
instances with n = 100000 items may be solved in a fraction of a second.
Keywords: Knapsack Problem, Dynamic Programming, Reduction.

11.1 Introduction

We consider the problem where n given items should be packed in m knapsacks of distinct
capacities ¢;, © = 1,...,m. Each item j has an associated profit p; and weight w;, and
the problem is to select m disjoined subsets of items, such that subset 7 fits into knapsack
v and the total profit of the selected items is maximized. Thus we may formally define

171

172 CHAPTER 11. LARGE MULTIPLE KNAPSACK PROBLEMS

the 0-1 Multiple Knapsack Problem (MKP) by

m n
maximize Z Z DjTij
i=1j=1

n
subject to ijxij <c¢, t=1,...,m,
=1

m
>z <1, j=1,...,n,
=1

x_zje{()’l}) izl,'--ym,j:].,-..,n.

(11.1)

where z;; = 1 if item ¢ is assigned to knapsack j and z;; = 0 otherwise. It is usual to
assume that the coefficients p;, w; and c¢; are positive integers, and to avoid trivial cases
we assume

ij.TaX ¢ forj=1,...,n, (11.2)
i=1,...,mn
¢ > min w; fori=1,...,m, (11.3)
7j=1,...,n
n
wj>e¢ fori=1,...,m. (11.4)
j=1

The first assumption ensures that each item j fits into at least one knapsack as otherwise
it may be removed from the problem. If constraint (11.3) is violated by a knapsack 7,
then we may discount the knapsack, as no items fits into it. Finally (11.4) avoids a trivial
solution where all items fit into one of the knapsacks.

There are several applications for MKP, as the problem directly reflects a situation
of loading m ships/containers or e.g. packing m envelopes. Martello and Toth [53] also
proposed the problem used for deciding how to load m liquids into n tanks, when the
liquids may not be mixed.

The Multiple Knapsack Problem is NP-hard in the strong sense, and thus any dynamic
programming approach would result in strictly exponential time bounds. Most of the
literature has thus been focused on branch-and-bound techniques, although Fischetti and
Toth [26] used some kind of dominance tests to speed up the solution process.

Several branch-and-bound algorithms for MKP have been presented during the last
two decades, among which we should mention Hung and Fisk [34], Martello and Toth
[48], Neebe and Dannenbring [61], and Christofides, Mingozzi and Toth [10]. The first
two are best suited for problems where several items are filled into each knapsack, while
the last two are designed for problems with many knapsacks and few items. This chapter
follows the first direction of research, as it is devoted to large problem instances where
the quotient n/m is relatively large. The presented algorithm differ from previous work in
four main respects: Lower bounds are derived by solving a series of Subset-sum Problems,
and Subset-sum Problems are also used for tightening the capacity constraints of each
knapsack. We use an efficient 0-1 Knapsack Algorithm for deriving upper bounds through
surrogate relaxation, and a new separable dynamic programming algorithm is presented
for solving the Subset-sum Problems.

11.2. UPPER BOUNDS 173

In Section 11.2 we will present different upper bounds for the Multiple Knapsack
Problem, and use these observations for a general discussion of exact algorithms in Section
11.3. The discussion leads to an improved algorithm described in Section 11.4 and ahead.
Section 11.5 shows how lower bounds may be achieved by solving a series of subset-sum
problems, and Section 11.6 shows how the capacity constraints in MKP may be tightened
in order to obtain tighter upper bounds. Section 11.7 considers some reduction algorithms
for the problem, and finally Section 11.8 compares the presented MULKNAP algorithm with
the MTM algorithm by Martello and Toth [48].

11.2 Upper bounds

Upper bounds for the Multiple Knapsack Problem may be derived by relaxing some of
the side-constraints, where surrogate, Lagrangean and linear relaxations are the most
common relaxations.

We will first consider the surrogate relaxation. Let mq, ..., 7, be some positive mul-
tipliers, then the surrogate relaxed Multiple Knapsack Problem (SMKP) becomes:

m n
maximize Z Z DjTij
i=1j=1

subject to Zm Z'le'ij < Zﬂicz‘, (11.5)
=1 j=1 i=1 :

m
wagla j:1,...,n,
=1

iU_ijE{O,l}, 1=1,....m, 5=1,...,n.

The best choice of multipliers 7; are those, that produce the smallest objective value in
(11.5), and in connection hereto Martello and Toth [49] proved the following

Proposition 11.1 For any instance of MKP, the optimal choice of multipliers 7y, ..., 7,
for MKP is m; = k for 1 = 1,..., m, where k is a positive constant.

With this choice of multipliers SMKP becomes the following ordinary 0-1 Knapsack Prob-

lem
n

maximize Y p;z;
Jj=1
n
subject to ijx;- <ce,

7j=1
z; €{0,1}, j=1,...,n,

(11.6)

where the introduced decision variables z; = >" ;| r;; indicate whether item j is chosen
for any of the knapsacks ¢+ =1,...,m, and ¢ = >_" | ¢; may be seen as the capacity of the
united knapsacks.

A different upper bound may be derived by Lagrangean relaxation of MKP. Let

Al,. .., An be a set of nonnegative multipliers, then by relaxing the constraint 3", z;; <

174 CHAPTER 11. LARGE MULTIPLE KNAPSACK PROBLEMS

1, j=1,...,nin (11.1) we get the problem

m n n m
maximize Z ijxij_)‘j (Z Tij — 1)
1 =1

=1 j=1 ji=

. = . 11.
subject to ija:ij <g¢, t=1,....,m, (11.7)
7j=1
zi; €{0,1}, i=1,....m, j=1,...,n.
By setting p; = p; — A; for j = 1,...,n the relaxed problem can be decomposed into m
independent 0-1 Knapsack Problems, where problem ¢ has the form
n
maximize z; = Z DjTij
j=1
(11.8)

n
subject to ijxij <g,
=1
:CijE{O,l}, j=1,...,’l’L,

for7=1,...,m. All the problems have similar profits and weights, thus only the capacity
distinguishes the individual instances. An optimal solution to the Lagrangean relaxed
problem is then

Z:ZZi+Z)\j. (119)
i=1 j=1

As opposed to the surrogate relaxation, there is however no optimal choice of multipliers
A; for the Lagrangean relaxation, thus usually a subgradient optimization technique must
be used for deriving them, although Ross and Soland [87] used predefined multipliers
expressed in terms of the break item b. It is not possible to say which of the two relax-
ations yield tighter upper bounds, as instances may be constructed where the surrogate
relaxation dominates the Lagrangean relaxation and vice versa [53].

Linear relaxation is a third common technique for deriving upper bounds. We relax
the constraint z;; € {0,1}in (11.1) to 0 < z;; < 1,fori=1,...,m,j =1,...,n. Martello
and Toth [53] proved, that the objective value of an optimal solution to the linear relaxed
MKRP is the same as that of an optimal solution to the linear relaxed SMKP. Thus to find
the objective value of the linear MKP, we may simply use the Dantzig upper bound of
the corresponding 0-1 Knapsack Problems: Assume that the items are ordered according
to nonincreasing profit-to-weight ratios

hosby D (11.10)

i - I

w1 W2 Wn,

and let the break item b be given by

b:min{j:ZwiZc}, (11.11)

11.3. EXACT ALGORITHMS 175

where ¢ = Y7, ¢; is the capacity of the surrogate relaxed problem. Then the Dantzig
upper bound [13] becomes

Ungrep = ripj + (c— bzle) @‘ . (11.12)

J=1

The linear upper bound may be derived in O(n) time using the technique of Balas and
Zemel [4], thus being considerably faster to determine than the previous two bounds. But
unfortunately the linear bound is too weak to efficiently cut off branches in an enumerative
algorithm, so most algorithms presented have been based on the surrogate or Lagrangean
relaxation.

11.3 Exact algorithms

Hung and Fisk [34] proposed a depth-first branch-and-bound algorithm where the upper
bounds were derived by Lagrangean relaxation, and branching was performed at the item
which in the relaxed problem had been selected in most knapsacks. Each branching item
was alternately assigned to the knapsacks in increasing index order, where the knapsacks
were ordered in nonincreasing order

C1 Z Co Z D Cmy- (1113)

When all the knapsacks had been considered, a last branch was considered where the item
was excluded from the problem.

A different branch-and-bound algorithm was proposed by Martello and Toth [48],
where at each decision node, problem (11.1) was solved with constraint 7", z;; < 1
omitted, and the branching item was chosen as an item which had been packed in k£ >
1 knapsacks of the relaxed problem. The branching operation generated k& nodes by
assigning the item to one of the corresponding k£ — 1 knapsacks or excluding it from all of
these.

In a later work Martello and Toth [49] however focused on three aspects that make it
difficult to solve MKP:

e Generally it is difficult to verify feasibility of an upper bound obtained either by
surrogate relaxation or Lagrangean relaxation.

e The branch-and-bound algorithm needs good lower bounds for fathoming nodes in
the enumeration.

e We need some knowledge to guide the branching towards good feasible solutions.

In order to evade these problem, Martello and Toth proposed a bound-and-bound algo-
rithm for MKP, where at each node of the branching tree we derive not only an upper
bound, but also a lower bound. This technique is well suited for problems, where it is easy
to find a fast heuristic solution which yields good lower bounds, and where it is difficult
to verify feasibility of the upper bound.

176 CHAPTER 11. LARGE MULTIPLE KNAPSACK PROBLEMS

The MmTM algorithm by Martello and Toth derives upper bounds by solving the sur-
rogate relaxed problem (11.5) while the lower bounds are found by solving m individual
0-1 Knapsack Problems as follows: First knapsack ¢ = 1 is filled optimally, the chosen
variables are removed from the problem, and the next knapsack 7 = 2 may be filled. We
continue this way until all m knapsacks have been filled. The branching scheme follows
this greedy solution, as Martello and Toth argue that a greedy solution is better to guide
the branching process, than individual choices at each branching node. Thus at each node
we fork in two branching nodes, the one assigning the next item j of a greedy solution to
the chosen knapsack 7, while the other branch excludes item j from knapsack i.

Martello and Toth assume that the capacities are ordered in nondecreasing order

c<e<---<epy (11.14)

while the items are ordered according to nonincreasing profit-to-weight ratios

LU .

w1 w9 W,

(11.15)

such that at any branching node we choose the item with largest profit-to-weight ratio
for the branching. At any stage, knapsacks up to ¢ have to be filled before knapsack 7 + 1
is considered.

11.4 New algorithm

The concept of bound-and-bound algorithms should be used for problems, where feasi-
bility of the upper bound solution is difficult to validate. But a solution to SMKP may
actually be validated by solving a series of Subset-sum Problems, where we try to split the
chosen items into the m knapsacks. If this attempt succeeds, our lower bound equals the
upper bound, and we may immediately backtrack. Otherwise we have obtained a feasible
solution which contains some (but not necessarily all) of the items selected by SMKP.
This attempt seems more promising than the approach presented by Martello and Toth
[49], since we consider the m individual packing problems as an integrated unit.

Furthermore we use Subset-sum Problems for tightening the capacity constraints cor-
responding to each knapsack, since if we cannot fill the knapsack completely even if all
items may be used, then the gap may be closed without excluding any optimal solution.

The branching scheme is based on a binary splitting where an item j is either assigned
to knapsack 7 or excluded from the knapsack. The knapsacks are ordered such that

< <...<em (11.16)

and we fill the smallest knapsack completely before starting to fill the next knapsack. At
any stage, items 7 < h have been fixed by the branching process, thus only items 7 > h
are considered when upper and lower bounds are determined. To keep track of which
items are excluded from some knapsacks, we assign a variable d; to each item j indicating
that the item may only be assigned to knapsacks 7 > d;. The current solution vector is y
while P and W are the profit and weight sum of the currently fixed items. Thus we have
the following sketch of the recursive branch-and-bound algorithm:

11.4. NEW ALGORITHM 177

Algorithm 11.1

procedure mulbranch(h, P, W, ¢y, ..., cn);

Tighten the capacities ¢; by solving m Subset-sum Problems defined on h+1,...,n.

Solve the surrogate relaxed problem with capacity ¢ = > ¢;. Let 2’ be the solution to
this problem, with objective value u.

if (P +u > z) then

Split the solution z’' in the m knapsacks by solving a series of Subset-sum Problems
defined on items with z; = 1. Let y;; be the optimal filling of ¢; with corresponding
profit sum z;.

Improve the heuristic solution by greedy filling knapsacks with >°% ., w;yi; < ¢;.

if (P+ X", % > z) then Copy y to z, set z =P + Y ", z. fi;

fi;
if (P+u > z) then

Reduce the items by using some upper bound tests, and swap the reduced items to the
first positions, increasing h.

Let ¢ be the smallest knapsack with ¢; > 0. Solve an ordinary 0-1 Knapsack Problem
with ¢ = ¢; defined on the free variables. The solution vector is z’. Choose the
branching item £ as the item with largest profit-to-weight ratio among items z’; = 1.

Swap £ to position h 4+ 1 and set 7 = h + 1.

Let y;; = 1; { Assign item j to knapsack i }

mulbranch(h + 1, P+ p;, W +wj,c1, ..., ¢ — Wj, ..., Cm);

Let y;; = 0; { Exclude item j from knapsack i }

Set d' =dj; dj :==1+1;

mulbranch(h, P, W, ¢i, ..., cn);

Find j again, and set d; = d'.

fi;

The surrogate relaxed problem is solved using the MINKNAP algorithm presented in
Pisinger [82], which has been modified such that the currently best objective value from
MKP is used as initial lower bound, and such that we choose the optimal solution, which
has smallest weight sum. The Subset-sum Problems are solved through separable dynamic
programming which will be described in Section 11.5, while Section 11.6 will show how we
use Subset-sum Problems for tightening the capacity constraints. Finally the reduction
algorithm is presented in Section 11.7.

The algorithm does not demand any special ordering of the variables, as the MINKNAP
algorithm makes the necessary ordering itself. This however implies, that items are per-
muted at each call to MINKNAP thus the last line of MULBRANCH cannot assume that
item j is at the same position as before.

The main algorithm MULKNAP only need to order the capacities and initialize a few
variables before the branch-and-bound algorithm is called:

Algorithm 11.2

procedure mulknap(n,m,p, w, z, ¢);
Order the capacities ¢ < ¢y < ... < ¢p.
for j:=1to ndo

178 CHAPTER 11. LARGE MULTIPLE KNAPSACK PROBLEMS

d; == 1;

for i =1 to m do z;; =0; y;; = 0; rof;
rof;
Set z := 0;

mulbranch(0,0,0, ¢, ..., ¢n);

Example 11.1 We will solve the following problem using the MULKNAP algorithm:

jlr 2 3 4 5 6 7 8 9 10
pj |81 34 59 11 69 32 37 99 62 74
w; |91 95 25 86 67 41 96 99 16 73

n=10,m =2, ¢, = 90, co = 254

First, we tighten the capacities, obtaining ¢; = 89, and ¢y = 254. The surrogate relaxed
problem is defined on all the above items with ¢ = 343. The optimal solution is | = 2§ =
xf = zg = xf = x5 = 1 while zf, = 2/, = 2!, = 2/, = 0. Thus the upper bound is u = 402.

A lower bound is obtained by solving two Subset-sum Problems defined on items
Jj=1,3,5,6,8,9. For capacity ¢c; = 89 we obtain the solution y;5 = y1 9 = 1 while the
remaining variables y; ; are zero. Items j = 5,9 are removed, thus for capacity c, = 254
we find yo1 = Y23 = y2,8 = 1, while all other variables y, ; are zero. A greedy filling of the
two knapsacks does not improve the solution, so the objective values are z; = 131 and
2o = 239. As the solution has been improved, we copy y to x and set z = 370.

The problem is reduced. We have the break item (p,, wp) = (81,91) from the surrogate
relaxed problem, and find that items j = 2,4, 7 may be reduced. Thus they are swapped
to the beginning of the table, and A is increased to 3.

In order to choose the next branching variable, we solve an ordinary 0-1 Knapsack
Problem defined on all free items, with capacity ¢ = ¢; = 89, obtaining 24 = 2z = 24 = 1
with remaining variables set to zero. The item with largest profit-to-weight ratio is j = 9,
which is swapped to position 4. Thus we have the new problem:

i1 2 3 4 5 6 7 8 9 10
p; |34 11 37 62 81 59 69 32 99 74
w; [95 86 96 19 91 25 67 41 99 73

Branch y; 4 = 1: The first capacity ¢; = 73 cannot be tightened while the second
is tightened to c; = 239. Solving the surrogate relaxed problem with ¢ = 312 we find
the solution zf = 2%, = zf = =i = 2}y, = 1 while zf = 0. The upper bound becomes
P+u= 395, and the solution is Spllt into Y1,10 =]_, and Y26 = Y2,7 = Y28 = Y2,9 = 1 with
all other variables set to zero. The objective value is improved to z = 395, and we copy
y to x. Since the upper bound equals the lower bound we backtrack.

Branch y; 4 = 0: We set dy = 2 to exclude item 4 from knapsack 1. The capacities
are tightened to ¢; = 73 and c; = 254. The surrogate relaxed problem defined on items
j > 4 with ¢ = 327 has the solution zy, = zf = o}, = 2§ = zf, = 2, = 1 with z{ = 0. The
objective value is P + u = 395 < z, thus we backtrack and finish.

11.5. THE SUBSET-SUM PROBLEM 179

11.5 The Subset-sum Problem

As previously mentioned lower bounds are obtained by splitting the chosen items in SMKP
into the m knapsacks. This is done by solving a series of Subset-sum Problems, where in
the first iteration we fill the smallest knapsack c¢; as much as possible, and remove those
items from the problem. Then the second smallest knapsack is filled, and we continue
this way until all knapsacks have been considered. If all items could be split into the m
knapsacks in this way, then the upper and lower bound of the current decision node are
equal and we may immediately backtrack. Let 7 = 1,...,n be the indices of the items
in an optimal solution to the 0-1 Knapsack Problem, where n usually is smaller than the
size of MKP.

The individual Subset-sum Problems are defined as:

n
maximize 2z = Z w;T;
=1

n

subjet to Y w;z; <, (11.17)
7j=1
z;€{0,1}, j=1,...,n.

Each problem may be solved in O(nc) time through dynamic programming by using the
recursion by Bellman [5], or by using the balanced dynamic programming algorithm of
Pisinger [76] which has time bound (nr) where r = max}_, w; < c.

However our situation is quite special as for large instances we generally have several
optimal solutions with -7 ; w;z; = ¢ while small instances demand most enumeration.

Thus a specialized algorithm was developed, which is based on the separability property
observed by Horowitz and Sahni [33]. Let b be the break item for (11.17) thus

i=1

J
b:min{j:Zwi>c}, (11.18)

and let f;(¢), (b—1 <t <n, 0 <é<c)bean optimal solution to the above problem
restricted to variables b, ...t as follows:

(i
Z ’lUjiEj :
j=b

f:(¢) = max ¢ Zt:w-m~<6 (11.19)
i = 6

i=b

L SE]'E{O,l}, j=b,...,t,

and let g5(¢), (1 <s<b, 0<¢é<e¢)bean optimal solution to the problem defined on

180 CHAPTER 11. LARGE MULTIPLE KNAPSACK PROBLEMS

variables s,...,b — 1 with the additional constraint z; =1, j=1,...,5s—1

¢ b—1 1—1
D Wi+) w;:
j=s i=1
9s(€¢) = max { -1 i1 ~
o9 S gy + Sy <
j:s]:1

| 2; €{0,1}, j=s5,...,b—1.

(11.20)

The recursion for f; will repeatedly insert an item, while the recursion for g, will
remove one item, thus

. fi—1(€) for ¢=0,...,w;—1
c) = - - - 11.21
£(e) { max{ f;_1(¢), fi—1(¢ —wy) +w} for ¢=wy,...,c ()
while we set
fo-1(€) =0 for ¢=0,...,c (11.22)
The corresponding recursion for g; becomes
o | gs11(€) for ¢=c—w;+1,...,c
95(6) = { max{gs+1(¢), gs+1(¢+w;s) —ws} for ¢=0,...,c— w;s (11.23)
with initial values B B o
gp(€) =0 for €=0,....c, £ W (11.24)
g(¢) =w for ¢=mw.
where W = 3/_] w;. Now we start from (s,¢) = (b,b — 1) and repeatedly decrease s and

increase t. At each stage we merge the two sets in O(c) time, in order to find the best
current solution
z = max f:(&) + gs(c = @), (11.25)

=0,...,c

and we terminate the process if z = ¢, or we reached (s,t) = (1, n).

The algorithm may be improved in those cases where v = 3% ; w; — W < ¢. Since
there is no need for removing more items j < b than can be compensated by items j > b,
we may restrict recursion g, to consider states ¢ = ¢ — v, ..., c while recursion f; only will
consider states ¢ =0,...,v.

The solution vector corresponding to the optimal objective value is found by back-
tracking through the states. To each state we associate the item number, that was added
or subtracted in order to obtain the state. From the optimal choice of states f;(¢), gs(c—¢)
we repeatedly subtract or add the corresponding items, obtaining new weights ¢ that can
be found previously in the table. The process terminates when we reach ¢ = 0 respectively
¢ = .

The presented algorithm has basically the same complexity O(nc) as the recursion
presented by Bellman [5] but if we use dynamic programming by reaching, only the live
states need to be saved thus giving the complexity O(min{nec, 2°+2"~*}), which for small
instances where 2" < ¢ and with b = n/2 improves by a square root over the Bellman
recursion.

11.6. TIGHTENING CONSTRAINTS 181

In our situation large sized instances generally have many solutions that satisfy the
capacity constraint (11.17) with equality, and here the separability ensures a faster con-
vergence. On the other hand small instances seldom meet the capacity constraint with
equality, thus we have to perform a complete enumeration, taking advantage of the fact
that 20 4 2n—b < 2,

11.6 Tightening constraints

For small instances, the upper bounds obtained by surrogate relaxation of the MKP are
too optimistic, as the individual knapsacks cannot be filled as efficiently as the surrogate
relaxed knapsack. To compensate for this inconvenience, we solve a series of Subset-sum
Problems to tighten the capacity constraint on each knapsack.

Considering the capacity constraints in (11.1) for each knapsack separately, the largest
possible filling ¢; of knapsack ¢ is found by solving the following Subset-sum Problem
defined on all free variables 7 > h where d; <1

n
maximize éz = Z W;Tij5
j=1

n

subject to ijxij < g, (11.26)
j=1
Tij € {0,1}, _]:1,,71,

As no optimal solution z can have weight sum »7_, w;z;; > ¢;, we may tighten the
constraints in (11.1) to
n
Z’wijl’i]’ < éi, 1= 1,...,m, (1127)
7j=1
for the current branching node as well as for all descendant nodes. In this way the capacity
of the surrogate relaxed problem becomes

c=>6<Y ¢ (11.28)

which leads to tighter upper bounds as well as it increases the chance for successfully
splitting the solution to SMKP into the m knapsacks.

11.7 Reduction algorithm

The size of a Multiple Knapsack Problem may be reduced by preprocessing, like an
ordinary 0-1 Knapsack Problem. For a given item j let uy(j) be any upper bound on
(11.1) with the additional constraint Y /*, x;; = 0. If uo(j) < z for any lower bound z,
then we may add the constraint >7;*, x;; = 1 to the problem, i.e. in every optimal solution
to MKP, item j must be included in some knapsack.

182 CHAPTER 11. LARGE MULTIPLE KNAPSACK PROBLEMS

In a similar way let u;(j) be any upper bound on (11.1) with the additional constraint
Yt @iy = 1. If uy () < z, then z;; may be fixed at 0 for i = 1,..., m, thus in any optimal
solution, item j cannot be included in any of the knapsacks.

Notice, that the last equation is able to fix all variables z;; to their optimal value for
t = 1,...,m, while the first equation only rules out one possibility out of m + 1. Thus
in the presented algorithm we have only incorporated the last reduction, which however
is quite efficient as not only several items are removed from the problem, but generally
also the capacity constraints may be tightened further when items are excluded from the
problem.

Using the upper bound by Dembo and Hammer [14] we get the following reduction
test: Let b be the break item of the surrogate relaxed problem, then we have the bound

) = | St nr+ (o= S w) 2. (11.29)

As the solution vector x corresponding to our lower bound is saved, we may use a tighter
reduction than presented above, fathoming an item j whenever u;(j) < z. This reduction
is performed at each branching node of the enumeration tree, and we swap the reduced
items to position A + 1, increasing h each time. The computational complexity of the
reduction is O(n) for testing n items which takes a negligible effort compared to the
determination of upper and lower bounds.

11.8 Computational experiments

We will compare the presented algorithm with the MTM algorithm by Martello and Toth,
for several groups of randomly generated instances. The code for MTM has been obtained
from [53], and all tests have been run on a HP9000/730.

We will consider four different types of randomly generated data instances, for different
ranges 2 = 100, 1000 and 10 000.

e Uncorrelated data instances: p; and w; are randomly distributed in [1, R].

e Weakly correlated data instances: w; randomly distributed in [1, R] and p,; randomly
distributed in [w; — R/10,w; + R/10] such that p; > 1.

e Strongly correlated data instances: w; randomly distributed in [1, R] and p; =
w + 10.

e Subset-sum data instances: w; randomly distributed in [1, R] and p; = w;,.

Martello and Toth [53] proposed to consider two different classes of capacities as follows:
Similar capacities have the first m — 1 capacities ¢; randomly distributed in

0.4> wj/m, 0.6 w;j/m| fori=1,... m—1, (11.30)

11.8. COMPUTATIONAL EXPERIMENTS 183

while dissimilar capacities have ¢; distributed in

n i—1
[0, 0.5 (ij—ch)] fori=1,...,m—1. (11.31)
j=1 k=1

The last capacity c¢,, is in both classes chosen as
n m—1
em =05> w;j— Y c, (11.32)
j=1 i=1

to ensure that the sum of the capacities is half of the total weight sum. For each instance
we check whether the constraints (11.2) to (11.4) are respected, and generate a new
instance if a constraint is violated.

A maximum amount of 1 hour was given to each algorithm for solving the ten instances
in each class, and a “—” in the following tables indicates that the ten problems could not
be solved within this time limit. The MTM algorithm is only designed for problems up to
n = 1000 and cannot solve larger instances without a modification of the code. Thus no
tests with n > 1000 have been run with MTM. Small data instances are tested with m =5
knapsacks, while large instances have m = 10, as none of the algorithms are able to solve
problems with small values of n/m. In each of the following tables, instances with similar
capacities are considered in the upper part of the table, while the lower part of the table
considers instances of dissimilar capacities.

First, tables I to V consider small sized data instances. Table I shows how efficient the
tightening of the constraints actually is. For each instance we give the largest tightening
™. (c; — ¢;), where ¢; are the original capacities and ¢; are the tightened capacities.
It is seen, that for small instances with large range R, the tightening is quite efficient,
significantly contributing to the bounding process. For problems larger than n = 100
there is little gain of the tightening approach, but computational experiments with m = 10
indicate that even for problems up to size n = 3000 this approach may be necessary in

order to close the gap between the upper and lower bound.

Table II gives the largest number of reduced items at any stage of the branch-and-
bound process. It is seen that especially the weakly correlated problems may be reduced

Table I: Tightening of constraints, small problems with m = 5. Maximum of 10 instances.

Uncorrelated Weakly correlated | Strongly correlated Subset-sum

n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
25 | 158 1159 14989 | 164 2057 15952 | 63 499 4372 0 380 3671
50 0 0 0 0 0 19881 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0 0 0 0 0
25| 35 692 3747 | 131 1238 11010 | 37 260 2865 | 14 204 2865
50 5 34 887 | 11 811 5677 2 21 486 2 30 540
75 4 30 310 | 12 92 1244 1 48 268 1 48 524
100 4 5 8| 16 101 2305 1 4 218 1 4 207
200 2 3 11 2 0 22 1 1 20 1 1 50

184 CHAPTER 11. LARGE MULTIPLE KNAPSACK PROBLEMS

Table II: Maximum number of items reduced, small problems with m = 5. Maximum of
10 instances.

Uncorrelated Weakly correlated | Strongly correlated Subset-sum

n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
25 | 11 10 10 | 13 13 13 9 6 2 0 0 0
50 0 0 0 0 0 23 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0 0 0 0 0
25| 10 8 7| 13 12 12 1 2 0 0 0 0
50 0 0 0| 19 25 20 0 0 0 0 0 0
75 0 23 25 | 32 30 32 0 0 0 0 0 0
100 0 0 0| 43 44 46 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0 0 0 0 0

Table ITT: Number of recursive calls to MULBRANCH, small problems with m = 5. Average
of 10 instances.

Uncorrelated Weakly correlated Strongly correlated Subset-sum

n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
25 | 1318 1067 664 | 8902 17912 9382 | 122 1174 670 1 517 595
50 1 1 1 1 1 3985 1 1 1 1 1 1
75 1 1 1 1 1 1 1 1 1 1 1 1
100 1 1 1 1 1 1 1 1 1 1 1 1
200 1 1 1 1 1 1 1 1 1 1 1 1
25 8 170 44 | 359 250 1498 2 57 62 2 27 43
50 1 1 1 3 212 1018 1 2 7 1 3 7
75 1 1 1 2 6 37 1 3 4 1 2 4
100 1 1 1 3 8 54 1 1 2 1 1 2
200 1 1 1 1 1 1 1 1 1 1 1 2

significantly, but also the uncorrelated instances are reduced a bit. The entries should
however be read with care, as problems that are solved during the first iteration of the
algorithm, never will reduce any items, while hard problems with a large search tree
generally will reduce a considerable amount of items. Thus the table is only presented to
show the effect in branching intensive situations.

The enumerative hardness of each instance is given in Table III, where we measure
the number of recursive procedure calls made by MULBRANCH. It is seen that most of the
large problems are solved in the first iteration, while especially problems around n = 25
items demand a very extensive search. It seems that large ranged problems demand more
enumeration, as it is more difficult to split the solution to the surrogate relaxed problem
into the m knapsacks. However, also small ranged problems may be difficult, as it is seen
for uncorrelated instances with n = 25, R = 100.

Table IV and V finally compare the solution times of MULKNAP with those of MTM.
It is seen that MULKNAP is able to solve all the instances in reasonable time, while MTM
has considerable problems for large sized and large ranged problems of weak and strong
correlation. If the individual entries are compared, it is seen that MULKNAP generally has
faster solution times than MTM, and the larger the problems become, the more efficient

11.8. COMPUTATIONAL EXPERIMENTS

185

Table IV: Total computing time MULKNAP, small problems with m = 5. Average of 10

Instances.
Uncorrelated Weakly correlated Strongly correlated Subset-sum

n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
251033 041 0.26 | 3.20 10.00 6.42 | 0.06 1.77 290 | 0.00 1.37 10.78

50 | 0.00 0.00 0.01 [0.00 0.00 11.83 | 0.00 0.01 0.09 | 0.00 0.00 0.08

751 0.00 0.00 0.01 | 0.00 0.00 0.01 | 0.00 0.02 0.18 | 0.00 0.00 0.04
100 | 0.00 0.00 0.00 | 0.00 0.00 0.01 | 0.00 0.02 0.19 | 0.00 0.00 0.03
200 | 0.00 0.00 0.00 | 0.00 0.00 0.01 | 0.01 0.08 0.97 | 0.00 0.00 0.03
25| 0.00 0.07 0.02 | 0.12 0.14 0.62 | 0.00 0.10 0.36 | 0.00 0.09 1.06

50 | 0.00 0.00 0.01 | 0.00 0.23 2.06 | 0.00 0.02 0.55 | 0.00 0.01 0.32

75 0.00 0.00 0.01 | 0.00 0.01 0.07 | 0.01 0.06 1.38 | 0.00 0.01 0.23
100 | 0.00 0.00 0.01 | 0.00 0.02 0.18 | 0.01 0.02 0.35 | 0.00 0.01 0.13
200 | 0.00 0.00 0.01 | 0.00 0.01 0.01 | 0.01 0.08 1.14 | 0.00 0.00 0.10

Table V: Total computing time MTM, small problems with m = 5. Average of 10 instances.

Uncorrelated Weakly correlated Strongly correlated Subset-sum

n\ R | 100 1000 10000 | 100 1000 10000 | 100 1000 10000 | 100 1000 10000
251034 0.80 0.75 | 3.96 7.87 442 | 0.37 9.74 29.12 | 0.00 19.64 111.36
50 | 0.06 2.13 6.21 | 0.63 62.06 181.67 | 3.02 6.68 522.53 | 0.00 0.01 0.06
751 0.05 1.19 1338 | 041 21.04 123.00 — 12691 322.34 | 0.00 0.00 0.05
100 | 0.05 1.27 10.35 | 0.11 21.36 242.46 — 623.90 — | 0.00 0.00 0.05
200 | 0.03 1.26 5.81 | 0.02 16.10 278.77 — — — | 0.00 0.01 0.05
25| 0.02 0.04 0.06 | 0.17 0.14 0.80 | 0.03 0.36 1.49 | 0.00 0.67 5.82
50 | 0.02 0.13 1.06 | 0.18 2.82 22.60 | 0.16 2.58 151.76 | 0.00 0.28 14.47
75| 0.02 0.29 1171 0.02 354 2149 | 868 111.48 169.50 | 0.00 0.08 4.97
100 | 0.01 0.23 2.63 | 0.03 417 21.71 — 197.25 212.37 | 0.00 0.02 1.22
200 | 0.01 0.09 0.80 | 0.01 11.73 153.46 — — — | 0.00 0.01 0.41

186 CHAPTER 11. LARGE MULTIPLE KNAPSACK PROBLEMS

Table VI: Total computing time MULKNAP, large problems with m = 10. Average of 10
instances.

Uncorrelated Weakly correlated Strongly correlated Subset-sum
n\ R | 100 1000 10000 | 100 1000 10000 [100 1000 10000 | 100 1000 10000
100 | 0.00 0.00 0.03 | 0.00 0.01 0.03 | 0.01 0.02 0.22 | 0.00 0.01 0.08
300 | 0.00 0.01 0.01 | 0.00 0.01 0.02 | 0.01 0.15 1.15 | 0.00 0.01 0.05
1000 | 0.00 0.00 0.00 | 0.00 0.00 0.01 | 0.06 0.60 5.83 | 0.00 0.01 0.04
3000 | 0.00 0.01 0.01 | 0.00 0.01 0.02 | 0.15 1.98 20.88 | 0.01 0.01 0.04
10000 | 0.01 0.02 0.03 | 0.01 0.01 0.04 | 0.85 7.29 135.36 | 0.02 0.02 0.05
30000 | 0.04 0.04 0.07 | 0.04 0.04 0.07 | 3.07 33.39 49187 | 0.05 0.05 0.08
100000 | 0.18 0.19 0.24 | 0.17 0.19 0.22 | 10.91 149.09 1176.09 | 0.22 0.20 0.29
100 | 0.02 0.00 0.60 | 0.01 0.38 19.78 | 0.00 1.96 12.80 | 0.00 0.26 8.55
300 | 0.00 0.01 0.05 | 0.00 0.01 0.20 | 0.02 3.16 4.04 | 0.00 0.14 0.35
1000 | 0.01 0.01 0.02 | 0.01 0.03 0.03 | 0.07 0.48 46.30 | 0.00 0.01 0.14
3000 | 0.00 0.01 0.02 | 0.01 0.01 0.08 | 0.17 2.04 27.45 | 0.01 0.01 0.08
10000 | 0.01 0.02 0.04 | 0.01 0.02 0.05 | 0.63 6.92 14433 | 0.02 0.03 0.07
30000 | 0.04 0.04 0.09 | 0.04 0.04 0.08 | 2.71 33.09 426.42 | 0.05 0.06 0.09
100000 | 0.18 0.19 0.25 | 0.18 0.19 0.22 | 12.61 147.46 1162.63 | 0.22 0.20 0.30

MULKNAP gets.

The last two tables, Table VI and VII compare the solution times of the two algorithms
for large instances n > 300. It is seen that MULKNAP is able to solve most of the large
sized instances while MTM only can solve low-ranged problems. For very large instances
n > 10000, MULKNAP is actually able to solve the problems in times comparable to the
best solution times for the 0-1 Knapsack Problem. Notice however the missing entry
for uncorrelated instances with n = 300, R = 10000. Despite the tight upper and
lower bounds, MKP is still NP-hard in the strong sense, and exponentially growing
computational times may emerge at any moment.

11.9 Conclusion

We have shown that large Multiple Knapsack Problems, despite the NP-hardness, gen-
erally are as easy to solve as ordinary 0-1 Knapsack Problems. Small instances with a
reasonable n/m ratio can also be handled, although large instances of the same kind are
almost intractable. Thus future research should be focused on those instances, where n/m

Table VII: Total computing time MTM, large problems with m 10. Average of 10

instances.
Uncorrelated Weakly correlated Strongly correlated Subset-sum

n\ R | 100 1000 10000 | 100 1000 10000 100 1000 10000 | 100 1000 10000
100 | 1.78 337.84 — | 54.25 — — — — — 1 0.00 0.01 0.08
300 | 0.12 31.71 502.31 0.11 391.93 — — — — 1 0.00 0.01 0.10
1000 | 0.03 37.02 828.39 | 0.01 105.97 — — — — | 0.01 0.02 0.11
100 | 0.18 1.20 1880 | 0.74 56.63 696.98 | 542.83 — — | 0.00 2.04 515.92
300 | 0.07 247 30.36 | 0.07 145.85 — — — — 1 0.00 0.25 6.09
1000 | 0.08 249 7587 | 0.02 24.76 — — — — | 0.01 0.04 4.79

11.9. CONCLUSION 187

is small.

The presented algorithm differs from previous work, by deriving lower bounds from the
surrogate solution by solving a series of Subset-sum Problems, and by using a specialized
algorithm for tightening the capacity constraints. Moreover efficient algorithms are used
for deriving upper bounds as well as for solving the Subset-sum Problem. In this way, the
presented MULKNAP algorithm is the first to solve very large instances n = 100 000 with
large data range R = 10000. It is also the first algorithm to solve strongly correlated
instances of large size.

188 CHAPTER 11. LARGE MULTIPLE KNAPSACK PROBLEMS

Chapter 12

Summary (in Danish)

Indenfor Kombinatorisk Optimering skelner man mellem polynomielle og N'P-harde prob-
lemer. De fgrste udmaerker sig ved at have kendte lgsningsalgoritmer hvor beregningstiden
er begraenset i et polynomium af data-stgrrelsen. For de N"P-héarde problemer kender vi i
princippet ingen anden lgsningsmetode end at gennemsgge samtlige lgsningsmuligheder,
hvilket i veerste fald resulterer i eksponentielt voksende beregningstider.

Denne afhandling omhandler en familie af A/P-harde problemer, kendt under navnet
Knapsack Problemer. Navnet kommer af, at alle problemer kan beskrives i termer af
nogle genstande, der skal pakkes i en eller flere rygsaekke. Trods navnet begraenser anven-
delserne sig dog ikke til paknings-problemer, men opstar hyppigt indenfor planlaegning af
transport og gkonomi, samt som underproblemer ved lgsning af mere komplekse problemer
i Kombinatorisk Optimering.

Effektiv lgsning af problemerne er derfor af essentiel betydning for adskillige fag-
omrader. Eftersom alle problemerne er AP-harde, sgger denne afhandling at afdackke
lgsningsmetoder, som har rimelige beregningstider for naesten alle praktisk forekommende
datatilfaelde, pa trods af at konstruerede datatilfelde kan vises at krave eksponentielt
voksende beregningsstider. En opfgrsel, der f.eks. kendes fra SIMPLEX algoritmen.

Traditionelt har de mest effektive algoritmer for Knapsack Problemer lgst en eller
anden form for kerne problem ved hjalp af branch-and-bound metoder. Et kerne problem
tillader lgsningsprocessen at fokusere pa de variable, hvor der er stgrst sandsynlighed
for at finde en optimal lgsning ved permutationer, og habet er, at alle variable udenfor
kernen kan reduceres vaek. Der har dog altid veeret nogle fundamentale problemer med
disse algoritmer, eftersom man ikke pa forhand kunne sige hvor stor en kerne skulle
veelges, og eftersom branch-and-bound teknikken nemt fgrte til eksponentielt voksende
beregningstider.

Hovedparten af dette arbejde er derfor baseret pa dynamisk programmering, hvor
beregningstiden i hgjere grad kan begraenses. I alle tilfzelde er det vores mal at udvikle
algoritmer, hvor kompleksiteten er begranset i “svaerheden” af problemet, f.eks. i antallet
af variable, hvor heltalslgsningen afviger fra den kontinuerte lgsning, eller udtrykt i stor-
relsen af de indgaende koefficienter. Teknikkerne har vaeret anvendt pa adskillige proble-
mer indenfor familien af Knapsack Problemer, og grundig afprgvning har vist metodernes
fortrin.

189

190 CHAPTER 12. SUMMARY (IN DANISH)

Hovedresultater

Der er arbejdet med seks problemer indenfor familien af Knapsack Problemer, omfat-
tende: 0-1 Knapsack Problemet, Multiple-choice Knapsack Problemet, Bounded Knap-
sack Problemet, Unbounded Knapsack Problemet, Subset-sum Problemet og Multiple
Knapsack Problemet. Hovedresultaterne indenfor denne afhandling kan kort opsummeres
som fglger:

e Minimale algoritmer

Ved at anvende adaptive algoritmer baseret pa dynamisk programmering, er det
lykkedes at udvikle minimale algoritmer for 0-1 Knapsack Problemet, Bounded
Knapsack Problemet og Multiple-choice Knapsack Problemet. Disse algoritmer ud-
merker sig ved at lgse en minimal kerne, og herudover at bruge faerrest mulige
kraefter pa reduktion og sortering. Beregningstiderne for algoritmerne er begranset
i termer af kernens st@rrelse, antallet af elementer, samt kapaciteten af rygsaekken,
og man opnar i praksis en linezr lgsningstid for nemme problemer, mens svaere
problemer er begranset i pseudo-polynomiel tid.

e Svarhed af kerne problemet

Selvom kerneproblemet for Knapsack Problemer har vaeret anvendt i snart 20 ar, er
der tilsynelandende ingen der har spekuleret over, at enkelte datatilfaelde pludselig
resulterer i unormalt lange beregningstider. Der er derfor udviklet en model til
forudsigelse af en kernes svaerhed, og en interessant konsekvens er, at alle hidtil
benyttede testproblemer faktisk svarer til den nemmest taenkelige situation. Forslag
til at undga problemer med kerne problemet bliver foreslaet og en ny metode til
afprgvning af algoritmer testes.

e Lgsning af sveere 0-1 Knapsack Problemer
Ved at benytte et klassisk resultat om separation af 0-1 Knapsack Problemer, er
denne idé anvendt til lgsning af ekstremt svaere problemer. Veerste-fald beregnings-
tiden for den udviklede algoritme er en kvadratrod bedre end for tilsvarende algo-
ritmer, hvilket muligggr lgsning af sakaldte AviS problemer af stgrrelse op til 50
variable.

e Reduktionsalgoritmer, og forbedrede greensevardier
Der er udviklet flere nye reduktionsalgoritmer som effektivt kan fastsla den optimale
vaerdi af adskillige beslutningsvariable. Disse reduktionsalgoritmer er ofte baseret pa
nye granseveerdier, hvor specielt enumerative graensevaerdier har vist deres fortrin.
Disse har den specielle egenskab, at de bliver strammere, jo laengere algoritmen er i
lgsningsforlgbet, saledes at de giver en effektiv afskeering af sggerummet.

e Linear-tids algoritmer for Subset-sum og 0-1 Knapsack Problemet
Der praesenteres en simpel dynamisk programmering algoritme som lgser Subset-sum
Problemet i linezer tid, safremt alle vaegte er begraenset af en konstant. Resultatet
kan umiddelbart generaliseres til 0-1 Knapsack Problemet, hvilket bade giver os en
ny nggle til lgsning af problemerne, men ogsa bidrager til en vigtig karakterisering
af problemerne.

191

e Generalisering til Multiple-knapsack Problemet

Multiple-knapsack Problemet er AP-hardt i steerk betydning, dvs. der kan ikke
findes pseudo-polynomielle algoritmer for dette problem. Alligevel kan adskillige
af de tidligere udviklede metoder benyttes her. @vre graensevaerdier for problemet
udledes ved lgsning af et 0-1 Knapsack Problem, mens nedre graensevardier findes
ved lgsning af et antal Subset-sum Problemer. Resultaterne er overraskende gode,
idet store problemer viser sig at kunne lgses meget hurtigt. F.eks. kan et problem
med 100000 genstande, der skal pakkes i 10 rygsakke lgses pa en brgkdel af et
sekund.

I forbindelse med ovenstaende arbejde er samtlige algoritmer implementeret, og der er
gennemfgrt indgaende afprgvning af adskillige hyppigt forekommende datatilfaelde. Da
alle testkgrsler i princippet er gennemfgrt pa samme datamaskine, giver athandlingen en
enestaende lejlighed til at sammenligne praktiske lgsningstider for individuelle algoritmer
og problemtyper.

Konklusion

Knapsack Problemers pseudo-polynomielle natur giver en excellent indsigt i kombina-
toriske problemers kompleksitet pa graensen mellem NP og P.

Det er i sagens natur sveert at give meningsfulde graenser for lgsningstiden af NP-
harde problemer, men vi har forsggt at udtrykke kompleksiteter begraenset i “svaerheden”
af et datatilfaelde. F.eks. stgrrelsesordnen af de indgaende koefficienter, stgrrelsen af
en minimal kerne, eller antallet af udominerede genstande. Selvom alle disse graenser
er eksponentielle i den yderste konsekvens, muligggr de en udskillelse af adskillige let
lgselige problemer, ligesom man er garanteret ensartede lgsningstider for problemer af
samme karakter.

Narvaerende arbejde har beskrevet flere problemer fra Knapsack familien, men ad-
skillige problemer er stadig abne. Der er gode udsigter m.h.t. at generalisere de oven-
for naevnte teknikker til Unbounded Knapsack Problemet, Bin-packing Problemet eller
Change-making Problemet. Endvidere vil de udviklede recursionsformler for dynamisk
programmering med stor sandsynlighed kunne bruges til forbedrede approximative algo-
ritmer.

192 CHAPTER 12. SUMMARY (IN DANISH)

Bibliography

[1] J.H.Ahrens and G.Finke (1975), “Merging and Sorting Applied to the Zero-One
Knapsack Problem”, Operations Research, 23, 1099-1109.

[2] R.D. Armstrong, D.S. Kung, P.Sinha and A. A. Zoltners (1983), “A Computational
Study of a Multiple-Choice Knapsack Algorithm”, ACM Transactions on Mathemat-
ical Software, 9, 184-198.

[3] D.Avis (1980) Theorem 4. In V.Chvdital, “Hard knapsack problems”, Operations
Research, 28, 1410-1411.

[4] E.Balas and E.Zemel (1980), “An Algorithm for Large Zero-One Knapsack Prob-
lems”, Operations Research, 28, 1130-1154.

[5] R.E.Bellman (1957), Dynamic programming, Princeton University Press, Princeton,
NJ.

[6] R.E.Bellman and S.E.Dreyfus (1962), Applied Dynamic Programming, Princeton
University Press, Princeton, NJ.

[7] M. H.Bjorndal, A.Caprara, P.1. Cowling, F. Della Croce, H. Lourenco, F.Malucelli,
A.J.Orman, D.Pisinger, C.Rego, J.J.Salazar (1995), “Some Thoughts on Combi-
natorial Optimization”, to appear in Furopean Journal of Operational Research.

[8] R.L.Bulfin, R.G.Parker and C.M. Shetty (1979), “Computational results with a
branch and bound algorithm for the general knapsack problem”, Naval Research
Logistics Quarterly, 26, 41-46.

[9] R.E.Burkard and U. Pferschy (1994), “The Inverse-parametric Knapsack Problem”,
Technische Universitit Graz, Austria, Report 94/288.

[10] N.Christofides, A. Mingozzi, P. Toth (1979). In N. Christofides, A. Mingozzi, P. Toth,
C.Sandi (eds.), Combinatorial Optimization, Wiley, Chichester, 339-369.

[11] V.Chvatal (1980), “Hard Knapsack Problems”, Operations Research, 28, 1402-1411.

[12] T.H.Cormen, C.E.Leiserson and R.L.Rivest (1990), Introduction to Algorithms,
MIT Press, Massachusetts.

193

194 BIBLIOGRAPHY

[13] G.B.Dantzig (1957), “Discrete Variable Extremum Problems”, Operations Research,
5, 266-277.

[14] R.S.Dembo and P.L. Hammer (1980), “A Reduction Algorithm for Knapsack Prob-
lems”, Methods of Operations Research, 36, 49—60.

[15] B.L.Dietrich and L.F.Escudore (1989), “More coefficient reduction for knapsack-
like constraints in 0-1 programs with variable upper bounds”, IBM T.J., Watson
Research Center, RC-14389, Yorktown Heights N.Y.

[16] B. L. Dietrich and L. F. Escudore (1989), “New procedures for preprocessing 0-1 mod-
els with knapsack-like constraints and conjunctive and/or disjunctive variable upper
bounds”, IBM T.J., Watson Research Center, RC-14572, Yorktown Heights N.Y.

[17] W.Diffe and M. E. Hellman (1976), “New directions in cryptography”, IEEE Trans.
Inf. Theory, IT-36, 644-654.

[18] K.Dudzinski (1991), “A note on dominance relations in unbounded knapsack prob-
lems”, Operations Research Letters, 10, 417-419.

[19] K.Dudzinski and S. Walukiewicz (1984), “A fast algorithm for the linear multiple-
choice knapsack problem”, Operations Research Letters, 3, 205—209.

[20] K.Dudzinski and S. Walukiewicz (1987), “Exact Methods for the Knapsack Problem
and its Generalizations”, Furopean Journal of Operational Research, 28, 3-21.

[21] M.E.Dyer (1984), “An O(n) algorithm for the multiple-choice knapsack linear pro-
gram”, Mathematical Programming, 29, 57-63.

[22] M.E. Dyer, N.Kayal and J. Walker (1984), “A branch and bound algorithm for solv-
ing the multiple choice knapsack problem”, Journal of Computational and Applied
Mathematics, 11, 231-249.

[23] D.Fayard and G. Plateau (1977), “Reduction algorithm for single and multiple con-
straints 0-1 linear programming problems”, Conference on Methods of Mathematical
Programming, Zakopane (Poland).

[24] D.Fayard and G. Plateau (1982), “An Algorithm for the Solution of the 0-1 Knapsack
Problem”, Computing, 28, 269-287.

[25] D.Fayard and G. Plateau (1994), “An exact algorithm for the 0-1 collapsing knapsack
problem”, Discrete Applied Mathematics, 49, 175-187.

[26] M. Fischetti and P. Toth (1988), “A new dominance procedure for combinatorial op-
timization problems”, Operations Research Letters, 7, 181-187.

[27] M.L.Fisher (1981), “The Lagrangian Relaxation Method for Solving Integer Pro-
gramming Problems”, Management Science, 27, 1-18.

BIBLIOGRAPHY 195

[28] J.C.Fisk and M. S.Hung (1979), “A heuristic routine for solving large loading prob-
lems”, Naval Research Logistics Quarterly, 26, 643—-650.

[29] M. R. Garey and D.S. Johnson (1979), Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, San Francisco.

[30] P.C. Gilmore and R.E.Gomory (1966), “The theory and computation of knapsack
functions”, Operations Research, 14, 1045-1074.

[31] J.Hinrichsen (1994), “Optimalt netdesign”, IMSOR, Denmark, Project 15/94 (in
Danish).

[32] C.A.R.Hoare (1962), “Quicksort”, Computer Journal, 5, 10-15.

[33] E.Horowitz and S.Sahni (1974), “Computing partitions with applications to the
Knapsack Problem”, Journal of ACM, 21, 277-292.

[34] M. S.Hung and J. C. Fisk (1978), “An algorithm for 0-1 multiple knapsack problems”,
Naval Research Logistics Quarterly, 24, 571-579.

[35] T.Ibaraki (1987), “Enumerative Approaches to Combinatorial Optimization —
Part 17, Annals of Operations Research, 10.

[36] T.Ibaraki (1987), “Enumerative Approaches to Combinatorial Optimization —
Part 2”, Annals of Operations Research, 11.

[37] O.H.Ibarra and C.E.Kim (1975), “Fast approximation algorithms for the knapsack
and sum of subset problem”, Journal of ACM, 22, 463-468.

[38] G.P.Ingargiola and J.F.Korsh (1973), “A Reduction Algorithm for Zero-One Single
Knapsack Problems”, Management Science, 20, 460—463.

[39] G.P.Ingargiola and J. F.Korsh (1977), “A general algorithm for the one-dimensional
knapsack problem”, Operations Research, 25, 752-759.

[40] R.G. Jeroslow (1974), “Trivial Integer Programs Unsolvable by Branch-and-Bound”,
Mathematical Programming, 6, 105—109.

[41] G.A.P.Kindervater and J. K. Lenstra (1986), “An introduction to parallelism in com-
binatorial optimization”, Discrete Applied Mathematics, 14, 135-156.

[42] P.J.Kolesar (1967), “A branch and bound algorithm for the knapsack problem”,
Management Science, 13, 723-735.

[43] J.Krarup and T.Illés (1993), “Maximum Cj-free bipartiate graphs and knapsack-
type programs”, DIKU, University of Copenhagen, Denmark, Report 93/28.

.Laporte , e Vehicle Routing Problem: An overview ol exact and ap-
44] G.L 1992), “The Vehicle Routing Probl A i f d
proximate algorithms”, Furopean Journal of Operational Research, 59, 345-358.

196 BIBLIOGRAPHY

[45] J.Majchrzak (1980), “On relations between continous and discrete multicriteria op-
timization problems”, Proceedings of 9th IFIP Conference on Optimization Tech-
niques, Lecture Notes in Control and Optimization Sciences, 28, Springer-Verlag,
Berlin, 473-481.

[46] S.Martello and P. Toth (1977), “An Upper Bound for the Zero-One Knapsack Prob-
lem and a Branch and Bound algorithm”, European Journal of Operational Research,
1, 169-175.

[47] S.Martello and P.Toth (1977), “Branch and bound algorithms for the solution of
general unidimensional knapsack problems”, In M. Roubens (ed.), Advances in Op-
erations Research, North-Holland, Amsterdam, 295-301.

[48] S.Martello and P. Toth (1980), “Solution of the zero-one multiple knapsack problem”,
European Journal of Operational Research, 4, 276-283.

[49] S.Martello and P.Toth (1981), “A bound and bound algorithm for the zero-one
multiple knapsack problem”, Discrete Applied Mathematics, 3, 275—288.

[50] S.Martello and P.Toth (1984), “A mixture of dynamic programming and branch-
and-bound for the subset-sum problem”, Management Science, 30, 7T65-771.

[61] S.Martello, and P. Toth (1987), “Algorithms for Knapsack Problems”, in S. Martello,
G. Laporte, M. Minoux and C.Ribeiro (Eds.), Surveys in Combinatorial Optimiza-
tion, Ann. Discrete Math. 31, North-Holland, Amsterdam, 1987, 213-257.

[52] S.Martello and P. Toth (1988), “A New Algorithm for the 0-1 Knapsack Problem”,
Management Science, 34, 633-644.

[53] S.Martello and P. Toth (1990), Knapsack Problems: Algorithms and Computer Im-
plementations, Wiley, Chichester, England.

[64] S.Martello and P. Toth (1990), “An exact algorithm for large unbounded knapsack
problems”, Operations Research Letters, 9, 15-20.

[65] S.Martello and P. Toth (1993), “Upper Bounds and Algorithms for Hard 0-1 Knap-
sack Problems”, Research Report DEIS, University of Bologna, OR/93/04.

[56] G.B.Mathews (1897), “On the Partition of Numbers”, Proceedings of the London
Mathematical Society, 28, 486-490.

[57] T.L.Morin and R.E.Marsten (1976), “Branch and bound strategies for dynamic
programming”, Operations Research, 24, 611-627.

[58] T.L.Morin and R.E.Marsten (1976), “An algorithm for nonlinear knapsack prob-
lems”, Management Science, 22, 1147-1158.

[59] R.M. Nauss (1976), “An Efficient Algorithm for the 0-1 Knapsack Problem”, Man-
agement Science, 23, 27-31.

BIBLIOGRAPHY 197

[60] R.M.Nauss (1978), “The 0-1 knapsack problem with multiple choice constraint”,
European Journal of Operational Research, 2, 125-131.

[61] A.Neebe and D.Dannenbring (1977), “Algorithms for a specialized segregated stor-
age problem”, University of North Carolina, Technical Report 77-5.

[62] G.L.Nemhauser and Z. Ullmann (1969), “Discrete dynamic programming and capital
allocation”, Management Science, 15, 494-505.

[63] S.N.N.Pandit, M. Ravi Kumar, “A Lexicographic Search for Strongly Correlated 0-1
Knapsack Problems,” Opsearch, 30, 76-116 (1993).

[64] C.H.Papadimitriou (1981), “On the complexity of integer programming”, Journal
of ACM, 28, 765 768.

[65] D.Pisinger (1990), “rknapple — An exact algorithm for the 0-1 Knapsack Problem”,
Master thesis, DIKU, Copenhagen, Denmark.

[66] D.Pisinger (1993), “On the solution of 0-1 Knapsack Problems with minimal prepro-
cessing”, Proceedings NOAS’93, Trondheim, Norway, June 11-12.

[67] D.Pisinger (1994), “A minimal algorithm for the 0-1 knapsack problem”, DIKU,
University of Copenhagen, Denmark, Report 94/23.

[68] D.Pisinger (1994), “Solving hard knapsack problems”, DIKU, University of Copen-
hagen, Denmark, Report 94/24.

[69] D.Pisinger (1994), “A minimal algorithm for the Multiple-Choice Knapsack Prob-
lem”, DIKU, University of Copenhagen, Denmark, Report 94/25.

[70] D.Pisinger (1994), “Core Problems in Knapsack Algorithms”, DIKU, University of
Copenhagen, Denmark, Report 94/26.

[71] D.Pisinger (1994), “A minimal algorithm for the Bounded Knapsack Problem”,
DIKU, University of Copenhagen, Denmark, Report 94/27.

[72] D.Pisinger (1994), “Dominance Relations in Unbounded Knapsack Problems”,
DIKU, University of Copenhagen, Denmark, Report 94/33.

[73] D.Pisinger (1994), “A minimal algorithm for the Multiple-choice Knaspack Prob-
lem”, Talk, EURO Summer Institute X, Jouy-En-Josas, France, July 2-15, 1994.

[74] D.Pisinger (1994), “Core Problems in Knapsack Algorithms”, Talk, University of
Pisa, Italy, October 27, 1994.

[75] D.Pisinger (1995), “An expanding-core algorithm for the exact 0-1 knapsack prob-
lem” to appear in Furopean Journal of Operational Research.

[76] D.Pisinger (1995), “An O(nr) Algorithm for the Subset Sum Problem”, DIKU, Uni-
versity of Copenhagen, Denmark, Report 95/6.

198 BIBLIOGRAPHY

[77] D.Pisinger (1995), “Avoiding anomalies in the MT2 algorithm by Martello and
Toth”, European Journal of Operational Research, 82, 206-208.

[78] D.Pisinger (1995), “A minimal algorithm for the Bounded Knapsack Problem”, In:
E.Balas, J.Clausen (eds.): Integer Programming and Combinatorial Optimzation,
Fourth IPCO conference. Lecture Notes in Computer Science, 920, Springer, Berlin.

[79] D. Pisinger (1995), “An O(nr) Algorithm for the Subset-Sum Problem”, Talk, Nordic
Workshop on Integer Programming and Combinatorial Optimization, Univesity of
Copenhagen, Denmark, January 6, 1995.

[80] D. Pisinger (1995), “The Multiple Loading Problem”, Proceedings NOAS’95, Univer-
sity of Reykjavik, Iceland, August 18-19, 1995.

[81] D.Pisinger (1995), “A minimal algorithm for the Multiple-choice Knaspack Prob-
lem”, to appear in Furopean Journal of Operational Research.

[82] D.Pisinger (1995), “A minimal algorithm for the 0-1 knapsack problem”, Submitted
Operations Research, first revision.

[83] D.Pisinger (1995), “Core Problems in Knapsack Algorithms”, Submitted.

[84] D.Pisinger and S. Walukiewicz (1989), “Experiments with 0-1 Knapsack Problem
Algorithms”, Working Paper ZPM 32/89, Systems Research Institute, Warsaw.

[85] G.Plateau and M. Elkihel (1985), “A hybrid method for the 0-1 knapsack problem”,
Methods of Operations Research, 49, 277-293.

[86] E.Polak and A.N.Payne (1976), “On multicriteria optimization”, in Y.C. Ho and
S.K. Mitter (eds.), Directions in Large-Scale Systems, Plenum Press, New York, 77—
94.

[87] G.T.Ross and R.M. Soland (1975), “A branch and bound algorithm for the gener-
alized assignment problem”, Mathematical Programming, 8, 91-103.

[88] H. M. Salkin (1975), Integer Programming, Addison-Wesley, Reading, Mass.

[89] Z.Sinuany-Stern and I. Winer (1994), “The one dimensional cutting stock problem
using two objectives”, Journal of the Operational Research Society, 45, 231-236.

[90] A.Sinha and A. A.Zoltners (1979), “The multiple-choice knapsack problem”, Oper-
ations Research, 27, 503-515.

[91] M. M. Syslo, N. Deo, J.S. Kowalik (1983), Discrete Optimization Algorithms, Prentice
Hall, Englewood Cliffs, New Jersey.

[92] M. Todd (1980) Theorem 3. In V.Chvétal, “Hard knapsack problems”, Operations
Research, 28, 1408-1409.

BIBLIOGRAPHY 199
[93] P.Toth (1980), “Dynamic programming algorithms for the zero-one knapsack prob-
lem”, Computing, 25, 29-45.

[94] C. Witzgal (1977), “On One-Row Linear Programs”, Applied Mathematics Division,
National Bureau of Standards.

[95] E.Zemel (1980), “The linear multiple choice knapsack problem”, Operations Re-
search, 28, 1412-1423.

[96] E.Zemel (1984), “An O(n) algorithm for the linear multiple choice knapsack problem
and related problems”, Information Processing Letters, 18, 123—128.

